
SANDIA REPORT
SAND2008-6044
Unlimited Release
Printed October 2008

Distributed micro-releases of bioterror
pathogens: threat characterizations and
epidemiology from uncertain patient
observables

J. Ray, B. M. Adams, K. D. Devine, Y. M. Marzouk, M. M. Wolf, and H. N. Najm

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

ITED

STATES OF AM

ER
IC

A

2



SAND2008-6044
Unlimited Release

Printed October 2008

Distributed micro-releases of bioterror
pathogens: threat characterizations and

epidemiology from uncertain patient observables

J. Ray, B. M. Adams, K. D. Devine, Y. M. Marzouk and H. N. Najm
Sandia National Laboratories, P. O. Box 969, Livermore CA 94551

and
Michael M. Wolf

4332 Siebel Center, MC-258, 201 N. Goodwin,
University of Illinois, Urbana-Champaign

Urbana, IL 61801
jairay,briadam,kddevin,ymarzou,hnnajm@sandia.gov

mmwolf@uiuc.edu

Abstract

Terrorist attacks using an aerosolized pathogen preparation have gained credibility as
a national security concern since the anthrax attacks of 2001. The ability to charac-
terize the parameters of such attacks, i.e., to estimate the number of people infected,
the time of infection, the average dose received, and the rate of disease spread in con-
temporary American society (for contagious diseases), is important when planning a
medical response. For non-contagious diseases, we address the characterization prob-
lem by formulating a Bayesian inverse problem predicated on a short time-series of
diagnosed patients exhibiting symptoms. To keep the approach relevant for response
planning, we limit ourselves to 3–5 days of data. In computational tests performed for
anthrax, we usually find these observation windows sufficient, especially if the out-
break model employed in the inverse problem is accurate. For contagious diseases, we
formulated a Bayesian inversion technique to infer both pathogenic transmissibility
and the social network from outbreak observations, ensuring that the two determi-
nants of spreading are identified separately. We tested this technique on data collected
from a 1967 smallpox epidemic in Abakaliki, Nigeria. We inferred, probabilistically,
different transmissibilities in the structured Abakaliki population, the social network,
and the chain of transmission. Finally, we developed an individual-based epidemic
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model to realistically simulate the spread of a rare (or eradicated) disease in a modern
society. This model incorporates the mixing patterns observed in an (American) ur-
ban setting and accepts, as model input, pathogenic transmissibilities estimated from
historical outbreaks that may have occurred in socio-economic environments with lit-
tle resemblance to contemporary society. Techniques were also developed to simulate
disease spread on static and sampled network reductions of the dynamic social net-
works originally in the individual-based model, yielding faster, though approximate,
network-based epidemic models. These reduced-order models are useful in scenario
analysis for medical response planning, as well as in computationally intensive inverse
problems.
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1 Introduction

The anthrax attacks of 2001 [3] are generally cited as the impetus for raising the specter of
rare pathogens as a terrorism tool. Yet pathogens have seen extensive use in war. There are
recorded accounts of malicious smallpox-infected blanket distribution during the French
and Indian Wars (1756–1763) and attempts to spread veterinary diseases among pack mules
and horses used in front-line positions during World War I [4]. Also, the Japanese Army,
during World War II, included a unit devoted to biowarfare [5] and the Soviet Union al-
legedly weaponized pathogens on an industrial scale [6]. The Sverdlovsk anthrax accident,
where an aerosolized anthrax preparation was inadvertently released from a military insti-
tution [7], provided one example of the potential effect of an outdoor aerosolized pathogen
release; the “Amerithrax” attacks [3] provided a bioterrorism counterpart. Thus people’s
ability to weaponize pathogens and intent to use them aggressively is not in doubt.

Pathogenic preparations have both tactical and strategic uses. Large attacks with a non-
contagious disease can severely degrade human population viability in a tightly circum-
scribed theater of war, while a contagious disease may spread uncontrollably, seriously
(and unpredictably) disrupting a nation’s operation. It has been estimated that a smallpox
attack infecting a small, but significant, fraction of a country’s population could completely
undermine its war effort–this decimation would primarily be effected by the public health
measures (social distancing and quarantine) required to combat spread and the required
care of infected people, rather than by any widespread morbidity due to the disease [4].
The threat posed by weaponized pathogens should not be taken lightly.

While prevention of a bioattack against a civilian population remains the obvious preferred
option, the question of how to best mount a medical response is never far behind. This
was investigated first in the “Dark Winter” exercise [8] and thereafter in many TOPOFF
(“Top Official”) exercises conducted by the Department of Defense. “Dark Winter,” which
investigated the mechanics of mounting a medical response to a smallpox attack on an
American city, revealed that detecting a bioattack and identifying its causative agent were
insufficient. Logistics planning (for medical personnel and infrastructure) required knowl-
edge of the number of infected individuals and the rate of disease spread. Further, this
information would be required quite soon after detection to mount a timely response. Since
such information is not readily available, any estimates provided would be “rough.”

The difficulty in deciding the response parameters has two origins. Many pathogens con-
sidered for bioattack use, e.g., Bacillus anthracis, rarely cause diseases in humans and
never in epidemic numbers; hence there is no “prior art” regarding countermeasures. Oth-
ers, e.g., Yersinia pestis (plague) and Variola major (smallpox) are old human scourges, but
any epidemic data were collected decades ago in regions with socio-economic character-
istics drastically different from those in contemporary American society, so it is not clear
that similar countermeasures would be applicable or effective today. Substantial evidence
indicates that socio-economic factors, or more specifically, social mixing patterns, play an
enormous role in determining how quickly and broadly a disease spreads. For example,
the basic reproductive ratio, R0, (the average number of susceptibles infected by a single
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infectious person) for the 1972 Yugoslav smallpox outbreak was around 5.4 [9] (before
countermeasures were introduced) and 17 within the confines of a West German hospital
during winter [10], yet an average value of 3.0 is generally used, given the preponderance of
data collected in rural areas of the Indian subcontinent during the 1960s and 1970s [9, 11].
Therefore, while historical outbreaks may provide guidance regarding medical and public
health responses, whole-hearted singular reliance on them would be foolhardy.

Despite the sparsity and lack of direct applicability of recorded data, the technical issues
behind questions raised by the “Dark Winter” exercise are clear. There is a need to create
models of rare-pathogen behavior in individuals that capture the diversity,– i.e., the stochas-
tic variability,– of humans. Then, if some individuals were infected, stochasticity would
guarantee that a small sample of those infected would develop symptoms early and be
diagnosed. The problem then reduces to inferring/estimating the characteristics of the (un-
seen) infected population from the small (diagnosed) sample drawn from it. This inference
process is not, theoretically, far-fetched. For contagious diseases, it relies on constructing
models that characterize pathogenic transmissibility separately from social mixing. Such
models, calibrated to historical outbreaks, permit the estimation of transmissibility (and
the social mixing model, though that can be discarded). This calculated transmissibility, in
conjunction with a social mixing model for contemporary society, could be used to predict
epidemic evolution with a reasonable degree of confidence. Finally, there is the obvious
requirement to construct a model of the social mixing observed in contemporary society,
for this purpose.

These are precisely the aims of our research effort. Given the paucity of data, any estimates
drawn will contain significant uncertainties; prudence dictates these be quantified. This
clearly demands a statistical approach; we adopt a Bayesian approach and develop param-
eter estimates as probability distribution functions. For contagious diseases, we adopt a
Poisson process-based model of disease transmission and social network models of social
mixing; these allow us to directly gauge the applicability of mixing parameters that we infer
from historical epidemic records, while cleanly separating the pathogenic transmissibility
from social factors of disease spread. Finally, we approach the problem of constructing an
epidemic model, commensurate with contemporary American society, with an individual-
based technique; this simplifies the comparison to real life for validation purposes. While
this approach may appear tedious and intractable, current literature offers much help.

Methodologically, the creation and “calibration” of the models present some stiff algo-
rithmic issues. Individual-based urban population models can be large and unwieldy so we
appeal to parallel computing. Scalable algorithms for individual-based models is an emerg-
ing field; we explore and develop new techniques in this work. Markov Chain Monte Carlo
(MCMC) techniques are an efficient way to solve the statistical inverse problems arising
in this context and will be adopted for the purpose; however, the high-dimensionality of
the contagious-disease problem, especially for inference of social networks, presents novel
challenges. Our research effort therefore has both modeling and algorithmic contributions
in equal measure.
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In the remainder of this report, we describe the inferential and modeling capabilities de-
veloped and their performance with both simulated and recorded data. In Section 3 we
describe our individual-based epidemic model and its approximations, which were devel-
oped for computational celerity. In Section 4, we formulate and solve an inverse problem to
estimate the characteristics of an infected population, given a small sample. In Section 5,
we develop a technique that estimates both pathogenic transmissibility and a social net-
work from observations of a smallpox epidemic. We conclude in Section 6 and assess the
extent to which we achieved our research goals. Throughout this report, anthrax serves as
a prototypical non-contagious disease; smallpox as its contagious counterpart.
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2 Literature review

In this section, we survey available literature pertinent to the problems considered here.
This will be done separately for the three sub-problems under investigation: the individual-
based epidemic simulation, the characterization of non-communicable disease outbreaks
and finally, that of communicable diseases. We finish with a short discussion of existing
literature on Markov Chain Monte Carlo methods, which are used to solve the inverse
problems arising in our work.

2.1 Individual-based models of epidemics

Epidemiologically based mathematical models and associated computer simulations are
widely used to understand historical disease outbreaks. Given sufficient characterizations
of pathogen dynamics and transmissibility, they can be used to predict the severity of fu-
ture epidemics and the impact of potential interventions. Perhaps the most prolific epidemic
models are compartmental differential equation models, which divide people into bulk cate-
gories such as susceptible, infectious, and recovered (immune or dead), SIR models. Tran-
sition between the compartments is then based on contact rates between susceptible and
infectious people and average recovery time. Simplifying a diverse population in this man-
ner yields a system of differential equations amenable to analysis and useful for assessing
key outbreak features as a function of time. A good overview of such models, including
mathematical analysis techniques and relevance for policy making can be found in [12].

Compartmental models predict the time evolution of population fractions in various dis-
ease stages, under mass-action (well-mixed population) assumptions. They can address
questions about the rate of spread of a disease, whether it will become endemic, and how
one might control seasonal or other cyclic epidemic waves. Potential enhancements to ba-
sic SIR models include: adding disease progression stages (e.g., to create S-Exposed-I-R
models), tracking multiple cohorts of people (e.g., to add age structure or account for im-
munocompromised individuals), and explicitly modeling vaccinated (people with partial or
full immunity) or quarantined groups.

A central goal of this project is to use extremely limited observations to invert epidemic
models, characterizing outbreak sources. Most aggregate population models (stochastic
ODE models possibly excepted) are insufficient in this regime, where only a small fraction
of the population is infected and potential transmission paths need to be analyzed to reveal
likely index and secondary cases. Agent-based simulation models, with social-contact net-
works and in-host pathogenesis models at their core, offer one means to predict epidemic
scenarios while tracking individuals and detailed transmission paths.

A number of intermediate model types accounting for social contact structure, but short
of fully agent-based simulations, are possible. One approach involves constructing a large
differential equation system, with one or more equations explicitly modeling each indi-
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vidual’s disease state and coupling via a static transition matrix weighting links between
pairs of individuals [13]. This could be viewed as analogous to electrical circuit network
simulations or a continuum model similar to the static network model presented in Sec-
tion 3.1. It includes sufficient detail to study the effect of social distance between people,
as represented in pairwise transmission force.

Lloyd and co-authors offer a gentle introduction to epidemic models on network topolo-
gies, and analysis comparing the potential effect of local versus global mixing [14, 15].
These papers bridge the gap from mass action to network-based models and illustrate chal-
lenges in analyzing the effect of social structures. Many have addressed disease spread
on variously connected networks, including the authors of [16, 17, 18] and [19], some
of whom use census data to inform social network construction. The importance of con-
sidering contact heterogeneity is emphasized in [20], where given a particular disease’s
basic reproductive ratio R0 (a dimensionless measure often used to quantify spread in a
population), a variety of epidemiological outcomes may be realized. Like compartmental
models, contact epidemiology-based models can be used to assess containment strategies
(quarantine or prophylaxis) or vaccination impact. See The structure and function of com-
plex networks [21] for a thorough discussion of network analysis, [22] for complex network
metrics capturing the most salient topological features, and [23] for algorithmic generation
and analysis of the social networks used in our present work.

Many of the papers cited above consider analysis of static network structures, and the cor-
relation between complex network metrics and summary epidemic outcomes. We now turn
to truly individual- or agent-based time-stepped simulations. They offer an alternate means
to assess disease spread in different societal structures, though have associated validation
challenges (as discussed in Section 6). These models typically have social contact network
structure and detailed in-host pathogenesis models, but could also include agent cognition
models representing human behavior during an epidemic. In [24], SEIR type models are
explicitly compared to agent-based models of the same phenomena, and effect of assump-
tions on network structure explored. The EpiSims model for smallpox transmission and its
associated contact network [25] is an early example on which our simulation is based, and
among the first simulations of its scale.

Several stochastic individual-based models are presented with a strong emphasis on con-
trol strategies. An age-dependent probability of transmission model is used in [26] to
model pandemic influenza spreading among 281 million U.S. citizens. Burke et al. [27]
and Longini et al. [28] also consider social structures, but use estimates of smallpox char-
acteristics from a recent expert panel and, in part, calibrate smallpox models to historical
data, before assessing vaccination strategies. Agent-based simulations can leverage sub-
stantial computing power to model with extreme detail, capturing the subtle effect of social
connectivity and performing precise scenario analysis.
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2.2 Characterization of anthrax outbreaks

Bacillus anthracis is an aerobic Gram-positive, spore-forming nonmotile Bacillus species.
The non-flagellated vegetative cell is about 1-8 µm in length and 1-1.5 µm in width. Spores
are approximately 1 µm in size and grow readily on laboratory media [29]. Anthrax spores
germinate when situated in a media rich in amino acids, nucleotides and glucose (e.g.,
blood and tissues of humans). When vegetative cells run out of nutrients, they form spores.
Vegetative cells are not robust; they disappear almost completely within 24 hours of be-
ing injected into water [30]. Spores, on the other hand, are hardy and can survive for
decades [31].

Inhalational anthrax follows deposition of spore-bearing particles (1-5 µm in size) in the
alveolar spaces. Macrophages ingest the spores, which are mostly destroyed. The survivors
are transported via lymphatics to the mediastinal lymph nodes where germination can oc-
cur up to 60 days later [32, 33]. In Sverdlovsk, cases occurred from 2 to 43 days after
exposure [7].

Few studies have used statistical methods to characterize the genesis of a partially observed
epidemic. Walden & Kaplan [34] introduced a Bayesian formulation for estimating the size
and time of a bioterror (BT) attack and tested it on a low-dose (less than ID25, the dose at
which a person has a 25% probability of incurring the disease) anthrax release correspond-
ing, approximately, to the Sverdlovsk outbreak [7] of 1979. Their formulation incorporated
an incubation period model developed by Brookmeyer et al. [35] and demonstrated the use
of prior distributions on N to reduce uncertainty in the inferred characteristics. Brookmeyer
& Blades [36] used a maximum likelihood approach, along with the anthrax incubation
model in [35], to infer the size of the 2001 anthrax attacks [3] before estimating the re-
duction in casualties due to the timely administration of antibiotics. Both [34] and [36]
developed similar expressions for the likelihood function, i.e., the probability of observing
a patient time series given an attack at time τ with N infected people. The incubation pe-
riod model in [35] was not dose-dependent, and hence no doses were inferred in these two
studies.

Significantly more effort has been spent in characterizing the incubation period of inhala-
tional anthrax. Most work has been experimental, with non-human primates subjected to
anthrax challenges [1, 32, 37, 38, 39, 40]. Brookmeyer et al. [35], on the other hand, used
data from the Sverdlovsk outbreak to fit a log-normal distribution of incubation periods
valid at low doses; their more recent work, based on a competing risks formulation, in-
cludes dose-dependence [41]. Wilkening [42] compares four dose-dependent models for
the incubation period distribution, one of which (termed Model D) is structurally identi-
cal to Brookmeyer’s [41], with updated parameters. Compared to Model D, Wilkening’s
Model A2 provides slightly better agreement with the spatial and temporal distribution of
anthrax cases observed in Sverdlovsk; the median incubation period predicted by Model
D is consistently larger than that predicted by Model A2 (see Figure 7). Yet experimental
results by Ivins et al. [40] and Brachman et al. [1] show significant departures from the re-
sults of both models, especially in the 103–104 spore dose range (see Figure 7). Thus both
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A2 and D must be considered approximate, though useful, predictive tools. In this study,
we explore the impact of model error by using Model D to simulate bioterror attacks while
using Model A2 for inference. A more detailed discussion of the anthrax incubation period
models is provided in Section 4.2.

The issue of dose-response functions, which indicate whether a person exposed to a number
of spores will actually contract the disease, will not be addressed in this study. We con-
centrate on inferring the number of people who are actually infected, not merely exposed
to the pathogen. The problem of estimating the probability of infection from D spores was
addressed by Brookmeyer et al. [41] as well as by Glassman [43] and Druett et al. [44].
Haas [45] has established that exposure to low doses can still pose a statistically significant
risk to large populations.

The BARD effort [46] also seeks to characterize a BT attack from presentation of symp-
toms. It attempts to estimate the location, height, and time of an airborne anthrax release,
as well as the number of spores. The observables consist of respiratory visits to emer-
gency departments, as might be obtainable from syndromic surveillance systems such as
RODS [47]. The model that relates these observables to outbreak characteristics includes a
Gaussian dispersion plume [48], Glassman’s infection relation [43], and a log-normal dis-
tribution of incubation periods, with dose-dependent mean and standard deviation. How-
ever, BARD’s use in an urban context is only approximate since Gaussian plumes are suited
mainly for open spaces [48].

In this study, we develop a Bayesian formulation for inferring BT attack characteristics in
the form of probability distributions for N, τ, and D, using data from the first 3–5 days
of an outbreak. We restrict ourselves to temporal analysis; that is, we do not take the
location of diagnosed patients into consideration. All tests are performed with anthrax as
the pathogen. In this study, a hypothetical infected population receives a broad range of
doses, commensurate with atmospheric dispersion over a 10-km � 10-km square domain.
We explore how the accuracy and uncertainty of inference are affected by the size of the
outbreak, the dose received, and the frequency with which patient data is collected. In the
interest of realism, we also consider cases in which the anthrax model used to generate the
observed data (via simulated outbreaks) is different from the model used in inference. We
conclude with an application of this method to the Sverdlovsk outbreak of 1979 [7].

This study adds a new degree of realism to outbreak data and its analysis compared to
those conducted in [34, 46]. Unlike [34], we consider dose-dependent incubation periods
and populations infected by a range of doses, as might be obtained by atmospheric disper-
sion, and infer a representative dose for the population. Since aerosol releases in confined
spaces can lead to high doses (comparable to or greater than ID50), the inferred dose serves
as a useful indicator of the indoor versus outdoor nature of the release. Unlike [46], model
uncertainty—when the disease model used in the inference procedure is only a partially ac-
curate representation of the disease’s behavior—is considered here to explore how large an
inference error one might encounter under realistic conditions. Further, since our analysis
is strictly temporal, we do not take into account the geographical location of patients; in a
mobile population, this can be a significant source of (observation) error, especially if the
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time of infection is not known and a detailed movement schedule of the infected patients is
unavailable. We also consider correlations between the inferred parameters of the attack,
demonstrating realistic cases in which scarce data might support multiple characterizations.
These were not explored in [34, 46].

2.3 Characterization of smallpox outbreaks

Smallpox is a highly contagious and frequently fatal disease. Its causative agent is an
Orthopox virus Variola major. The best sources of epidemiological information on small-
pox are [11, 49]. The disease has 12 manifestations, ranging from the uniformly fatal
hemorrhagic and flat manifestation to the relatively mild “modified” manifestation [49];
overall the mortality rate is approximately 30%. The disease follows a typical incubation-
prodromal-contagious-removed sequence; removal by recovery bestows immunity. The
distributions for the incubation, prodromal and contagious periods can be found in [2],
where they were modeled as Γ distributions. The R0 for smallpox, a measure of the spread-
ing rate in a virgin population, has been estimated to vary between 3 and 17 [9]; the upper
limit of spread was observed in a hospital in Meschede, W. Germany, in 1970 [10], where
the contagion “leaked out” from the isolation ward with warm air into an insulated hospital
(it was winter).

The threat from a release of smallpox would be of a strategic nature; apart from its high
mortality rate, it spreads rather quickly. Smallpox has been used in warfare in the past (in-
fected blankets were distributed to the Indians during the French and Indian Wars, 1754–
1767, by the British forces in North America [4]) and it has been alleged that the Soviet
Union weaponized it [6]. However, its ability to spread in a contemporary society is un-
known, though attempts have been made to model it [25, 50]. These models attempt to sep-
arate the effects of social mixing from pathogen characteristics, but are frequently forced to
use parameters whose values are largely guessed. Thus being able to extract the pathogenic
transmissibility from observations of historical epidemics, separate from the effect of social
mixing on disease spread, can be of help in informing such models. Also, given this degree
of uncertainty in crucial pathogenic and epidemiological parameters, a real-time approach
to measure the instantaneous spreading rate of such an outbreak would be helpful, if only to
measure the efficacy of epidemiological countermeasures. Thus, methods to characterize
outbreaks of contagious diseases, from full and partial observations, can be useful.

Such efforts have already started, mostly for emerging infectious diseases. Recent stud-
ies [51, 52, 53, 54] have concentrated on estimating the spread rates (R0) of various emerg-
ing strains of influenza, from sparse observations; however, they have generally used con-
ventional, ordinary differential equation-based SEIR models. Consequently, these studies
do not include the effect of any structure in the population on the spread of the disease.
Of late, there has been some interest in addressing problems of statistical inference, pred-
icated on incomplete data, which involve stochastic epidemics in a structured population.
Typically, the structure involves clustering, most commonly, a family or a household. The
in-household rate of spread is assumed to be larger than the rate at which households them-
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selves get infected. Cauchemez et al. [55] performed such a study on the spread of in-
fluenza, as observed over a period of 15 days, in Epigrippe, France. Their recent work,
however, structures the population into adults and children and infers the importance of
children as vectors for the diseases, conditioned on Sentinel data [56]. Eichner and Di-
etz [2] divided the population in the Abakaliki into 3 groups and estimated inter- and intra-
group spread rates of smallpox. In both these studies, homogeneous mixing was assumed
inside each group i.e., there was no notion of a social graph.

Introduction of an unobserved social graph into an inference problem renders it high-
dimensional (since the social graph itself becomes a model “parameter” to be inferred)
and has generally been addressed using Markov Chain Monte Carlo (MCMC). MCMC
has been used to infer epidemiological models, even when social graphs were not in-
volved [57, 58, 59]. Britton and O’Neill [60] investigated gastroenteritis and shigellosis
outbreaks where they explicitly introduced a social graph into a stochastic epidemic model.
They assumed an SIR model and formulated a Bayesian inverse problem for the dates of
infection and the average contagious period of the disease (assumed exponentially dis-
tributed). A closed population was assumed, and a binomial graph, with an uncertain
connection probability, used to model interpersonal relations. Disease transmission over
a social link was modeled as a Poisson process, whose rate was inferred as a part of the
solution. The authors formulated a Bayesian inverse problem, predicated on the removal
dates of the epidemic victims, and solved it using an MCMC procedure. A mixture of
Gibbs and Metropolis-Hastings updates were used to sample the high-dimensional param-
eter field, which include the social graph and the infection pathway. The size of the prob-
lem was generally small (10–40 patients in a population of roughly 100–200). Demiris
and O’Neill [61] extended Britton and O’Neill’s approach to address two-level mixing,
i.e., where the social graphs for inter-household and intra-household connections assumed
different contact probabilities. However, they retained the SIR model, assumed that the
contagious period was known, and modeled the social graphs as binomial graphs.

Modeling social connections with a binomial graph is rather restrictive; studies have shown
that human contacts rarely follow such a distribution [62]. Britton’s recent work has ad-
dressed the generation of random graphs that follow a given degree distribution [63], but
they have not yet been incorporated into an epidemic inference problem.

2.4 Markov Chain Monte Carlo methods

We conclude our discussion of prior work with a quick review of Markov Chain Monte
Carlo (MCMC) methods which we use to solve our Bayesian inverse problem. Inverse
problems are most profitably formulated in a Bayesian framework if (1) the data are di-
verse and (2) the data are sparse. Diverse data, which may not be linked together via a
model in an inverse problem, can be accommodated directly via prior beliefs in a Bayesian
inverse problem. Bayesian methods allow estimation of inverse problem unknowns as prob-
ability density functions; this is critical when data are sparse and point estimates could be
insufficient/misleading. [64] is an excellent reference on the formulation and mathematical
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aspects of such problems; [65] adopts a more practical approach to formulating Bayesian
inverse problems. Such problems result in an expression for the joint posterior probability
distribution for the problem unknowns (and thus can be high-dimensional). The joint prob-
ability distribution is evaluated by sampling from it, which is most efficiently done using
MCMC methods. Metropolis-Hastings samplers, which can address arbitrary posterior dis-
tributions, will be used in this work; [66, 67, 68] provide an excellent and detailed treatment
of the matters, including many practical issues (e.g., “convergence” of the MCMC chain to
a stationary state in a finite number of steps, for which no theoretical metric exists).

MCMC methods are not without problems; they often have difficulty sampling from mul-
timodal distributions. However, “mode-hopping” MCMC methods, which directly address
this problem, have been studied [69, 70, 71]. MCMC also have difficulty with narrow and
skewed posterior distributions; these may be resolved by either transforming the unknowns
yielding a better-behaved distribution (i.e., more circular) [66] or adapting the proposal dis-
tribution [72], particularly when dealing with high-dimensional problems [73]. An intuitive
way to deal with higher-dimensional problems (where a single chain may have difficulty
visiting the entire space in a reasonable number of iterations) or problems where evalu-
ating the posterior distribution is computationally expensive (where a single chain may
not be able to take many steps in a reasonable amount of time) is to have multiple chains
distributed among multiple CPUs in a parallel supercomputer; Population Monte Carlo
methods to do so have been investigated [74, 75].
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3 Individual-based models of epidemics, including
approximations

A detailed model for inter-person disease transmission is essential for solving inverse prob-
lems to characterize outbreak source, strength, and number of people infected. It also
enables crucial scenario analysis including potential transmission paths, effect of interven-
tions such as vaccination and quarantine, and advance disaster response placement deci-
sions. Detailed individual person-based models can also inform construction of aggregate
(mass-action) epidemic models, such as SEIR models, potentially with structured popula-
tions.

The inversion work in this project concerns source identification given extremely limited
observations. Aggregate population models are insufficient in this regime, where the total
number infected is low and potential transmission paths need to be analyzed to reveal likely
index and secondary cases. To meet these needs, we constructed a stochastic, individual-
based model for disease transmission, including social contact network structure and de-
tailed in-host pathogenesis models. Key features of the initial model prototype include:

� object-oriented C++ implementation;� text-based input file specifying simulation characteristics;� accepts bipartite person/location or unipartite person/person contact graph;� accepts static or dynamic (time-varying) contact graph;� capable of simulating multiple diseases simultaneously;� scales well via MPI parallelism for rapid individual scenario analysis, or can be run
massively serial for ensemble Monte Carlo analysis;� aggregates multiple events in time to coarser time scale; and� can perform reduced-order simulations using user-provided person and/or location
samples.

In this section we describe our individual-based disease transmission model, including so-
cial networks and associated transmission models, available social network data, potential
network reduction approaches, and in-host pathogenesis models. We present sample simu-
lation results which demonstrate bulk epidemic properties and spatial spread, including for
reduced-order simulations.
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3.1 Social contact networks and transmission models

While disease model stochasticity could derive in part from stochasticity of the social con-
tact network or uncertainty of its specification, the network specification to our disease
model is explicit deterministic input. The specification of a social network for disease
spread may be static or dynamic, and may be bipartite (e.g., with nodes representing peo-
ple and locations) or unipartite, modeling only person-to-person interactions. While any
of these combinations are feasible, those implemented in the present disease model are
discussed here.

The available transportation-based data (described in Section 3.2) include dynamic, bipar-
tite graph characterizations similar to those used by Eubank et al. [25]. Graph nodes consist
of people and locations, and dynamic edges connect people to locations, indicating their
transient behavior throughout the day. In this specification, when people are collocated
(same geographic coordinates and same sublocation, e.g., room within a building), there is
potential for disease transmission.

The static person-to-person networks considered consist of nodes (people) and weighted
edges indicating time of collocation. While weights could be specified as percent time col-
located (relative to other people pairs), the data specify collocation in hours for a 24-hour
period. The network structure is currently supplied to the disease model in augmented com-
pressed sparse row (CSR) format, with a specified period (24 hours), and edge weights in
hours of collocation. The static network-based disease simulation is therefore time stepped
using the 24-hour period specified for the connectivity data. Static equivalents of the dy-
namic contact graphs are included in the available data sets.

We consider two models for inter-host disease transmission. The first is a physics-based
model, where people (and locations when considering a bipartite representation) have a
disease “load” associated with each pathogen they may acquire [25]. Contagious individu-
als shed pathogen, either to the location or directly to other people, at a potentially disease
state- or covariate-dependent rate, influencing their load. Susceptible individuals absorb
pathogen from the environment (at a potentially demographics-dependent rate), and up-
date their load and in-host pathogenesis model accordingly, as described in Section 3.4.
Load is not intended to strictly quantify the amount of disease present in an entity, but
rather provides a means to model transmission and progress the relative state of disease
in an individual. In this report, the load-based model is closely associated with the dy-
namic bipartite case, so individuals shed to and absorb from locations (as in the Eubank
et al.“environment-mediated transmission” model), but could be generalized to the direct
transmission case.

In the load transmission model, initial conditions (pathogen levels) may be specified by
contaminating locations, or directly infecting people. In contaminated locations and peo-
ple who have not yet reached their infectious dose (ID), pathogen decays or grows expo-
nentially at a fixed rate. This allows modeling of diseases with varying vectors, including
contamination, and differing requirements for sustained growth or decay. A person be-
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comes infected once they reach their assigned infectious dose.

The second transmission model is simpler, based on the probability of transmission be-
tween two collocated individuals. Based on the overall probability of transmission in a
24-hour period, we assume that the probability increases with time collocated, according
to

p j 
 1 � exp

� � NN

∑
i � 1

pi � t � wi j � (1)

where p j denotes the probability of susceptible person j being infected, given collocation
with NN neighbors over a 24-hour time period. The time-dependent pi � t � is the scaled
probability of neighbor i infecting a susceptible person and is dependent on their disease
state and therefore simulation time t. The weight wi j indicates the time person i and j are
collocated in a 24-hour period. While this could be implemented for both the static and
dynamic graph cases, we presently only consider such transmission models for the former.

Initial disease conditions (outbreaks or attacks) may affect people or locations, and may
be specified by person or location. For example, the simulation input may specify that
location 101 is contaminated, that all people in location 101 are directly infected, that
specific people individuals are infected, or the location (or its occupants) corresponding to
a particular individual is attacked (as in the malicious case).

3.2 Available network data

Results presented in this report use social contact network data available from the Network
Dynamics and Simulation Science Laboratory (NDSSL) of the Virginia Bioinformatics In-
stitute at Virginia Tech. These synthetic data for the population of Portland, Oregon, are
generated from detailed simulation models implemented in Simfrastructure, which aims
to simulate functioning virtual cities at the individual level [76, 77]. Simfrastructure in-
cludes TRANSIMS for agent-based large-scale transit simulations [78] and EpiSims for
disease outbreak modeling [25], and is designed to create a prototypical urban population
and infrastructure and together with individuals’ movements and interaction with the in-
frastructure. The most relevant features of these synthetic data include:� approximately 1.6 million people, with demographic attributes, and assignment to

households;� 243,423 geographically distinct locations that people may visit, with � x � y � coordinate
pairs in meters (roughly two locations per roadway link/city block);� activity data, indicating movement of people among locations, and their purpose in
occupying a location, for a typical day (these characterize a dynamic, bipartite social
contact graph); and
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� a static projection of the social contact network, based on the dynamic activities, that
results in a person-to-person social contact graph with edges weighted according to
time collocated.

The populations were generated to be statistically equivalent to Portland census data at
the block level. Collocation of two individuals at a geographic location is insufficient for
contact, as a location may include multiple sublocations. For example, there may be several
households and/or work sublocations assigned to a single location.

The NDSSL released two versions of synthetic data for Portland. Initial model development
used Data Set Version 1.0 [76], released in January 2006, but several limitations required
moving to Data Set Version 2.0 [77] when it was released in 2007. Potential limitations
with the Version 1.0 data include:� a total time span of approximately 30 hours, and no clear means to select a 24-hour

slice for simulation purposes;� many individuals would “disappear” for long periods of time (5–6 hours), i.e., were
not assigned to locations for these time spans, would occupy a location for potentially
unrealistic durations (order seconds), or only have movement data for a small fraction
of the 30-hour simulation period;� some overlapping people events, i.e., a person may be assigned to two distinct loca-
tions at the same time, and;� lack of explicit sublocation data (as generated by the underlying EpiSims sublocation
model).

For model prototyping and testing, most of these are not fatal limitations. However, the
lack of sublocation-resolution movement data prohibited comparison between the dynamic,
bipartite and static, unipartite graph models. The latter static network instances were gener-
ated from social contact based on the sublocation model, which requires people to not only
occupy the same geographic location, but also the same sublocation. The Version 2.0 data
set explicitly included sublocation data for both person movement and household locations,
enabling comparison to the static graph case.

Other minor differences between the Version 1.0 and 2.0 data sets include addition of
boolean worker information, relationship of people to household head, and number of
household vehicles. Also, there are minor differences in numbering/indexing of entities
in the data. The disease simulation can accommodated pre-processed data from either orig-
inal data format.

A potential benefit of the Version 2.0 data is inclusion of several realizations of disease
spread simulated with the Epi-Fast model, including various initial conditions and simu-
lated public health interventions. These could be used to to compare disease transmission
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assumptions, with a common underlying social structure. For further details on the con-
struction and characteristics of the synthetic data used, the interested reader should consult
the technical reports from NDSSL references above and references therein.

3.3 Description of population sampling approaches

The static unipartite network is one example of a surrogate for (approximation of) the full
dynamic, bipartite graph. Strategic population and/or location sampling offers another type
of surrogate or reduced-order model for the full-fidelity simulation. One model reduction
technique involves clustering or partitioning people, based on a similarity metric, and then
selecting one or more (perhaps a percentage of) people from each cluster. The sampled
representatives can then be used in a disease simulation as a surrogate for the full popula-
tion.

For illustration purposes, consider a simple matrix representation, with one row per loca-
tion, one person per column, and non-zero entries Ci j that indicate person j visited location
i. Instead of indicators the entries could be weighted by time spent in that location over a
24-hour period. The inner product of two columns C � j and C � k gives a measure of similar-
ity between persons j and k in terms of locations they visited that could then be used for
clustering.

We consider two specific clustering variants; the first based on person-to-location clustering
and the second on person-to-person clustering.

1. Person-to-location clustering with Zoltan: This approach clusters people who visit
the same locations, but does not represent collocation of people with respect to time.

In this variant, hypergraph coarsening [79] from the Zoltan toolkit was used to cluster
the people in the simulation. Vertices of the hypergraph represented people; hyper-
edges represented locations. A hyperedge, then, consisted of all people who visited
a given location during a 24-hour period. This hypergraph representation is more
compact and retains more information than a person-to-person graph constructed by
connecting (with graph edges) all individuals who visited a location. In our coars-
ening algorithm, we computed the number of locations shared by pairs of people.
People who shared the most locations were considered to be most similar and, thus,
were grouped together in a greedy manner. The coarsening process was terminated
when a coarse hypergraph of user-specified size was obtained.

This process was used to generate people samples of sizes 107,359 and 6,874 using
Data Set Version 1.0. Adaptations of this process accounting for percentage of time
collocated through summary weights on hyperedges are possible, but not considered
here.

2. Person-to-person clustering with PVXORD: This approach clusters people who
are often collocated at the same locations, or collocated for similar amounts of time.
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In contrast to the person-to-location approaches, where the data size is M locations
by N people, this variant operates on larger N � N data, and requires examination
of time-dependent collocation data to generate the connectivity matrix. Dynamic
movement data for hour 6 only (software was limited by data size), were used to
construct a person-to-person contact graph with edges weighted by percentage of
simulation time individuals are truly collocated (normalized to 1.0). We used the
parallel VXORD software PVXORD (Wylie, Martin, Brown) to assign people to
clusters and then sample one representative person (or again a percentage of people)
from each cluster. By this means a population sample of 238,370 individuals was
generated.

A challenge in performing this kind of network model reduction is properly scaling con-
tact rates and disease properties so the reduced-order graphs are faithful to the full-fidelity
simulation; see comparative results in Section 3.6.

3.4 In-host pathogenesis (micro-models)

In-host disease progression models are based on stages and at a minimum, include those
corresponding to an SIR model: susceptible, infectious, and recovered. The residence times
in each disease period are sampled from probability distributions, introducing a stochastic
element. Associated with each phase are indicators for whether a person is susceptible,
contagious, and/or symptomatic for that phase. This could readily be extended to include
severity of susceptibility or contagiousness dependent on a person’s disease state or even
covariate (e.g., demographic) information.

For example, for smallpox, we consider the periods with distributions specified in Ta-
ble 1, similar to the original EpiSims smallpox model. Here the normal distribution is
parametrized by mean and standard deviation and the uniform by its lower and upper
bounds. The exposure period is of variable length, as a person remains in it until reaching
their assigned infectious dose. At the end of the recovery period, a person could have ac-
quired immunity, otherwise is dead. There is wide speculation about the pathogenesis of
smallpox in modern society, and slightly different periods together with discrete probabil-
ity distributions are reported by Longini et al. [28], with reference to consensus of a recent
Smallpox Modeling Working Group working group commissioned by the United States
Department of Health and Human Services.

For load-based disease models, as in [80], we assume that the human ID50 (infectious
dose, 50% probability) is 5 PFUs (plaque forming units), and that 500 PFUs provide an
almost 100% probability of infection. Infectious doses for individuals in the simulation are
therefore sampled from a log-normal probability distribution with mean 18 and standard
deviation 68.

While disease stage lengths vary across individuals, the associated disease loads (with the
exception of that required to enter incubation) are the same for all people. During a stage,

30



Table 1. Representative smallpox disease periods, with probability distributions for durations.

period distribution log (load threshold) notes

exposure n/a
incubation normal (12.0, 2.0) 0.5
prodromal constant (3.0) 2.0 symptomatic

contagious burst constant (0.5) 6.0 symptomatic, infectious
contagious decline normal (6.5,1.0) 7.0 symptomatic, infectious

recovery uniform (6.0,12.0) 6.0

the disease load grows exponentially with (potentially negative) rate required to attain the
specified starting and ending load over the sampled period length. The in-host load model
can therefore be represented as an ordinary differential equation

dL � t �
dt 
 a � t � L � t � (2)

with piecewise constant growth rate a � t � . While the generality of a differential equation
is not necessary for the present simulation, which uses piecewise constant growth rates
over each disease stage and therefore has an explicit analytical solution, it permits the
replacement of the in-host models with more complex pathogenesis models if desired.

For the results here, we consider fixed shedding and absorption rates 1 � 0e � 4 and 5 � 0e � 3,
respectively. The model also permits specifying these in a demographics- or disease state-
dependent fashion. For example, data might support age-dependent transmission rates, or
specification that infected individuals are more contagious in specified time windows or
given certain variants of a disease.

3.5 Parallel implementation

An initial implementation of load-based time stepping with the dynamic network proved
computationally intensive (requiring over 26 CPU hours on a single 3.60-GHz Intel Xeon
processor to simulate three weeks of disease spread). The first parallel implementation
replicated locations on all processors and partitioned people among processors. An MPI
all-to-all communication pattern updated loads, where contributions to loads (load updates)
were computed on all processors and then all-reduced. This approach did not scale well
with the number of processors.

The current model incorporates a point-to-point communication model, which leverages
services from Sandia’s Zoltan framework. [81] Along with the new parallel communica-
tion model, we partitioned both locations and people among processors, reducing memory
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Figure 1. Parallelism: improved scalability with point-to-point communication model.

requirements per processor. With point-to-point communication, each processor registers
needed load updates (either local people needing off-processor location data or local lo-
cations needing off-processor people data), and the Zoltan communicator orchestrates the
parallel data movement when requested. For static networks a single communication ini-
tialization suffices, whereas for dynamic networks the communication pattern must typi-
cally be re-initialized at each time step.

Even with this additional overhead, the new parallel model scales nearly linearly up to 64
processors, as shown in Figure 1. Formal profiling studies have not yet been conducted,
but we conjecture that for this (relatively small) social network, communication begins to
dominate local processing at around 64 processors. If scalability tapered for larger data
sets, load balancing via Zoltan’s hypergraph partitioning would likely help.

3.6 Sample simulation results

The section includes sample disease model results for smallpox. A preliminary plague
model, has been implemented, but not yet exercised.

In Figure 2 we present an example of the spatial spread of disease in Portland, Oregon,
over 21 days. The initial condition (I1) exposed 1599 collocated people to 100 PFUs of
smallpox each, 312 collocated people to 30 PFUs each, and contaminated another location
with 1000 PFUs. Based on the dynamic load-based model, the intensity represents the
disease load at the location. The geographic spread is not simply diffuse, but indicates
social connections are responsbile for first bringing disease to a new region. Ongoing work
is exercising the model with carefully selected initial locations to assess spread across key
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city features and natural partitions.

Figure 2. Representative spatial spread of smallpox in an urban setting over 21 days, using full-
fidelity dynamic network, Data Set Version 1.0.

Comparison between the dynamic and static network approaches is shown in Figures 3
and 4, with comparative SEIR data for one and six months, respectively. These results cor-
respond to an initial condition affecting seven locations, with varying amounts of pathogen
in the load-based case and a 95% probability of initial transmission in the direct transmis-
sion case. While there are some deviations in time, the simulations agree qualitatively.
The plots indicate more secondary infections in the load-based case. The parameters for
the dynamic, load-based simulation are adapted from [25] while those used in the static,
simple-contact model are adapted from [28]. Given the independence of the parameters and
differences in simulation formulations, the agreement is surprisingly good. If calibrated,
this discrepancy could likely be reduced.

We present examples of model reduction for both the person-to-location (1) and person-to-
person (2) sampling cases, using Data Set Version 1.0, initial condition I1. Figure 5 depicts
overall epidemic spread with the full population and with the 107,359-person sample. The
initial outbreak wave is captured well by the reduced-order model, but the wave of sec-
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Figure 3. Comparison of summmary SEIR data for dynamic and static network approaches, one-
month horizon, Data Set Version 2.0.

ondary infections is considerably stronger in the full population. The geographic spread
of the disease in the reduced-order case is shown in Figure 6. Qualitatively, the epidemic
characteristics are similar, but clearly reduced-order population models must incorporate
scaled rates in order to properly represent the full population. Our network sampling tech-
niques are heuristic and could be improved by adding analytic rigor in the sampling process
to preserve particular graph and/or simulation characteristics in the sample.
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Figure 6. Representative spatial spread of smallpox in an urban setting over 21 days, using
reduced-order dynamic network based on person-to-person clustering.
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4 Characterizing outbreaks from partial observations:
the case for non-contagious diseases

Non-contagious diseases (i.e., diseases that are not spread from human to human) usually
refer to vector-borne diseases or zoonotics. Such diseases have been largely controlled by
standard public-health policies. However, a few of them, most famously, anthrax, have
been weaponised – i.e., turned into a form, by industrial means, into an aerosol that can be
dispersed easily and efficiently (see [82, 4] for a review of various state-sponsored programs
and their vicissitudes). Outbreaks caused by their release are not expected to bear any
resemblance to commonly observed zoonotic outbreaks. In this section we identify what
such outbreaks of non-contagious disease may look like, what the relevant issues are and
mostly, how such issues may be resolved. For the purposes of our study, we will use anthrax
as the pathogen.

The release of weaponised anthrax (similar to the Amerithrax attacks [3]) will probably
occur in a bioterrorism or biological warfare setting. The aim will be to infect a large
number of people, N, who then would have to be cared for, thus imposing a severe cost
in terms of resources. From the victim’s point of view, estimating N becomes critical
for the allocation of resources. Since the quantity of pathogen released, the time, and
location of release may not be known, a straightforward estimation (using models of aerosol
dispersion) is impossible. N, therefore, may have to be estimated by indirect means.

N individuals infected with a spectrum of doses of anthrax will come out of incubation
over a period of time, leading to a time-series, ni � i 
 1 ���
� M of diagnosed people over M
days. The time-series will provide definite proof of a biological attack and may allow one
to infer N (and secondarily, the time of release τ and a representative dose D). Further, we
will adopt a purely temporal approach which will not require the location of the diagnosed
people at the time of infection.

In this section, we develop a Bayesian formulation for inferring BT attack characteristics
in the form of probability distributions for N, τ, and D, using data from the first 3–5 days of
an outbreak. All tests are performed with anthrax as the pathogen. Compared to [34] and
[46], we introduce a new degree of realism to outbreak data and its analysis. Unlike [34],
we consider dose-dependent incubation periods and populations infected by a broad range
of doses, commensurate with atmospheric dispersion, and infer a representative dose for
the population. Since aerosol releases in confined spaces can lead to high doses (compa-
rable to or greater than ID50), the inferred dose serves as a useful indicator of the indoor
versus outdoor nature of the release. Unlike [46], model uncertainty—situations in which
the disease model used in the inference procedure is not an accurate representation of the
disease’s behavior—is examined here in order to assess how large an error one might en-
counter under realistic conditions. We also explore how the accuracy and uncertainty of
estimates are affected by the size of the outbreak, the dose received, and the frequency
with which patient data is collected. Further, we identify correlations between the inferred
parameters of the attack, demonstrating realistic cases in which scarce data might support
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multiple characterizations. These were not explored in [34, 46].

Since our analysis is strictly temporal, we do not rely on the geographical location of pa-
tients; in a mobile population, locations can be a significant source of error, especially if the
time of infection is not known and a detailed movement schedule of the infected patients is
unavailable. For example, the nighttime locations of the Sverdlovsk victims show no trend,
while the daytime locations lie approximately on a straight line bearing southeast of a mil-
itary facility (see [82] for a discussion; the plots of the daytime and nighttime populations
are in [83]). We conclude with an application of this method to the Sverdlovsk outbreak of
1979 [7].

4.1 Formulation

We now formulate a Bayesian parameter estimation problem for the characteristics of a
BT attack. Consider a time series of infected patients

�
ti � ni � , i 
 0 ����� M, where ni is the

number of people developing symptoms in the time interval � ti � 1 � ti � . For simplicity, we
let the intervals be of uniform length ∆t 
 ti � ti � 1, typically 6 or 24 hours. t0 marks the
time at which the first symptomatic patient is identified; this patient may have developed
symptoms anytime between t0 and t � 1 
 t0 � ∆t. M is the total length of the time series and
is expected to be small, e.g., 3–5 days. We seek a probabilistic model for these observables,
conditioned on an attack that infects N people at time τ with a uniform dose of D spores.
By convention, we set t0 to zero, and thus τ, the time of infection, is always negative.

The dose-dependent incubation period is described by its cumulative distribution function
(CDF) C � T � D � , where T , the incubation period, is the time elapsed since infection. The
probability of an infected individual developing symptoms in the interval � ti � 1 � ti � is thus�
C � ti � τ � D ��� C � ti � 1 � τ � D �	� . Let L 
 ∑M

i � 0 ni be the total number of people who have
developed symptoms by the end of the observation period tM. Then N � L infected people
are still asymptomatic; the probability of someone remaining asymptomatic at tM is the
survival probability, Psurv � tM � τ � D � 
 1 � C � tM � τ � D � . Since the incubation times of
each individual are conditionally independent given N, τ, D and the disease model, the
probability of the entire time series

�
ti � ni � obeys a multinomial distribution with M � 2

outcomes. One outcome corresponds to remaining asymptomatic at tM; the M � 1 others
correspond to developing symptoms in a preceding time interval. The resulting conditional
probability distribution is given by the following expression:

P � � ti � ni � M
i � 0 �N � τ � D �
 N!� N � L � !∏M

i � 0 ni!
� �

Psurv � tM � τ � D �	� N � L

� M

∏
i � 0

� C � ti � τ � D ��� C � ti � 1 � τ � D ��� ni� L � N � τ � D ��� (3)
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In last line of this equation, we rewrite the probability of the observables as a likelihood
function L � N � τ � D � . We then use Bayes rule to obtain the posterior probability of the attack
parameters:

p � N � τ � log10 � D � � � ti � ni � M
i � 0 � ∝ L � N � τ � D � πN � N � πτ � τ � πD � log10 � D ���	� (4)

Note that we have written the posterior density in terms of log10 � D � rather than D; this is in
keeping with [43, 42], where response to infection is generally modeled as a function of the
log-dose. Here πN , πτ, and πD are prior densities on N, τ, and log10 � D � . Presuming a lack
of additional information, we use broad uniform priors on all three parameters. The joint
posterior density can then be marginalized to obtain individual probability density functions
(PDFs) for N, τ and log10 � D � . Integrals yielding these marginal densities are evaluated
using the VEGAS algorithm [84], an iterative adaptive Monte Carlo method implemented
in the GNU Scientific Library [85].

4.2 Anthrax incubation models

This section briefly reviews mathematical models used to predict the onset of symptoms
in a person exposed instantaneously to D anthrax spores. The onset time is a random
variable, described by its cumulative distribution function (CDF). These models are from
Wilkening [42]; details of their derivation can be found in [42, 86].

The CDF for Wilkening’s Model D is given by [42, 86]

CModelD � T � D � 
�� T

0
F � T � s;D � λ � θ � g � s � ds � (5)

which is a convolution of F � T ;D � —the probability that at least one spore out of a dose of
D spores will germinate into a vegetative anthrax cell by time t—and g � s � , which is the
PDF of the time s taken, post-germination, to reach a bacterial load at which symptoms
appear. F and g are defined as

F � T ;D � λ � θ � 
 1
p  1 � exp  � Dλ

λ � θ
Q � T �
!"!#� where

Q � T � 
 1 � exp � � � λ � θ � T ��� (6)

p 
 1 � exp  � Dλ
θ � λ

! (7)

and

g � s � 
 1$
2πσss

exp  � 1
2

log2 � s % Ms �
σ2

s
!&� (8)
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p, the probability of showing symptoms in infinite time, is also called the attack rate. These
distributions depend on a number of parameters:� Nthresh, a threshold bacterial load in a person that causes symptoms;� t2, the bacterial load doubling time in a given medium (e.g., mediastinal lymph nodes

where the spores germinate), which can be obtained from in vitro laboratory experi-
ments;� tM, which is the time required to reach a bacterial load of Nthresh

tM 
 tlag � t2
log � 2 � Nthresh

D
;� tlag, a lag time in bacterial growth experiments (typically 1 hour);� σ2

s , the variance of the log of the time required to reach the symptomatic bacterial
load;� θ, the probability rate of clearance of a spore (by the immune system), specified in
terms of probability of clearance per spore per day;� λ, the probability rate of germination of a spore, specified in terms of probability of
germination per spore per day.

In the present models, Ms, the median time to symptoms, is set to tM. The values of
the parameters for Model D are θ 
 0 � 109 day � 1, λ 
 8 � 79 � 10 � 6 day � 1, tlag 
 1 hour,
t2 
 2 � 07 hour, Nthresh 
 109 and σs 
 0 � 544 day � 1.

Sartwell [87] found that the incubation period for a number of diseases was log-normally
distributed, which is at odds with Eq. 5. Wilkening’s Model A2 captures this alternative by
assuming a log-normal distribution,

CModelA2 � T � D � 
 1
2 ' 1 � erf  ln � T % T0 �$

2S
!)(*� S 
 0 � 804 � 0 � 079log10 � D � (9)

where T0, the median incubation time, is obtained by solving an integral equation derived
from Eq. 5

0 � 5 
 � T0

0
F � T0 � s;D � λ � θ � g � s � ds �

However, in solving for t0, Wilkening used a slightly different set of parameters: θ 

0 � 11 day � 1, λ 
 8 � 84 � 10 � 6 day � 1, tlag 
 1 hour, t2 
 2 � 06 hour, and σs 
 0 � 542 day � 1.
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The reason for the slight change in parameters as well as the difference between Models
A2 and D is discussed below.

Parameters in Eqs. 5 and 9 were obtained by fitting the models to the median incuba-
tion periods observed in experiments with non-human primates (performed by Henderson
et al. [37] and Friedlander et al. [32]) and to the data from the Sverdlovsk anthrax outbreak.
The average dose in the Sverdlovsk outbreak, however, had to be inferred from atmospheric
dispersion models and the probability of exhibiting symptoms (in infinite time) given a
dose of D spores. This is the procedure adopted by Wilkening [42]. Using Glassman’s
model [43] for the probability of infection, one obtains an average dose of 2.4 spores. Al-
ternatively, if one employs Eq. 7 (which is similar in form to Druett’s [44] and was used by
Brookmeyer in [41]) one obtains a dose of 300 spores. Wilkening retained both possibili-
ties and incorporated them into separate models. Model D is based on a dose of 300 spores
at Sverdlovsk while A2 assumes 2.4 spores.

In Figure 7, we plot the median incubation period predicted by Models A2 and D as a
function of dosage D. The dosage at Sverdlovsk, estimated as 2.4 spores (represented
by � ) is used to calculate parameters for Model A2 (solid line); the alternative estimate
of 300 spores (represented by a filled ∇) is used for Model D (dashed line). Studies by
Henderson [37] with 2 � 1 � 105, 3 � 9 � 105 and 7 � 6 � 105 spores (represented as filled + ) and
Friedlander with 3 � 5 � 105 spores (represented by filled , ) were also used to calculate the
parameters of both models. Studies by Ivins et al. [40] (unfilled , ) and Gleiser et al. [39]
(unfilled - ) were conducted with very few primates and consequently are plotted only for
reference. Primate experiments by Brachman [1] simulated the effect of prolonged regular
exposure to low doses, as might be the case in a contaminated wool-sorting mill. The
primates experienced extended periods during which they received no spores at all. The
dose was defined as the total number of spores inhaled and was generally low, between
1000 and 10,000 spores. We plot the resulting ranges of incubation periods observed at
various dosages, also for reference.

We see that the tests by Gleiser et al. and Ivins et al. agree with both models, which in
turn agree with each other. However, significant differences arise when D ./ 103 spores.
(Note that the vertical axis is logarithmic.) Brachman’s tests show median incubation pe-
riods that are at odds with the models’ predictions; however, the mode of infection (a con-
tinuous low-level infection process spread over days or months) was very different from
the rapid (timescale of an hour) challenge one would expect in a BT attack. Both mod-
els show a “kink” at D 0 103; this is because they are evaluated with a lower value of
λ (1 � 3 � 10 � 6 day � 1), corresponding to a primate ID50 of 55,000 spores, for comparison
with primate results at the high-dose limit, while the low-dose predictions were developed
with a human ID50 of 8600 spores for comparison with Sverdlovsk data. To the best of the
authors’ knowledge, this is the sum total of experimental data obtained from anthrax chal-
lenges of non-human primates where incubation times were measured. We have omitted
a study by Klein et al. [88] in which an incubation period increase was observed with in-
creasing doses, because only one primate was subjected to each dose, making the behavior
statistically unreliable.
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Figure 7. The median incubation period for anthrax as a function of dose D. The solid line is
Model A2, which assumes a dose of 2.4 spores at Sverdlovsk; the dashed line is Model D, which
assumes 300 spores. The solid symbols are median incubation periods obtained from experimental
investigations or from Sverdlovsk data. The filled circle (Sverdlovsk; Wilkening Model A) refers
to both Models A1 and A2, though only Model A2 is used in the current study. Symbols which are
not filled denote experiments where the population of primates was too small to draw statistically
meaningful results. The experiments by Brachman et al. [1] are shown by vertical lines between
symbols. In these experiments, only the lower and upper bounds of the incubation period were
provided. These ranges were not used for determining model parameters and are only provided for
reference.
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4.3 Inference of attack parameters with ideal cases

In this section we test the Bayesian estimation procedure described above. We use Wilken-
ing’s Model A2, described in Section 4.2, to simulate inhalational anthrax outbreaks of
different sizes. The same model is used for inference; that is, there are no systematic er-
rors between the inference and data-generation models. Thus, posterior uncertainties may
be ascribed to (1) incomplete observation of the outbreak, specifically finite time resolu-
tion ∆t and a short time series, and (2) the probabilistic character of disease incubation.
We investigate how the quality of the inference varies with the size of the outbreak and the
dose received. We also investigate whether a higher-resolution time series spanning a given
observation period performs significantly better than a lower-resolution one.

In Table 2, we list time series at 6-hour resolution: the number of patients showing symp-
toms collected over 6-hour intervals obtained from 6 simulated outbreaks, henceforth called
Cases A–F. Each infected patient received an identical dose D. N indicates the number of
people infected and τ is the time of attack, measured in days prior to the exhibition of
symptoms in the first diagnosed patient.

We use the procedure outlined in Section 4.1 to develop posterior PDFs for N, τ, and
log10 � D � in Cases A–F. Figs. 8, 9, and 10 plot the resulting marginal densities for

�
N � τ � log10 � D �	�

. These are conditioned on the 6-hour resolution time series listed in Table 2. In Table 3, we
summarize the maximum a posteriori (MAP) estimates and 90% posterior credibility in-
tervals (CIs) for N, τ, and log10 � D � obtained with 5 days of data. We see that the marginal
MAP estimate for N (the value of N corresponding to the peak of p � N � � ti � ni � M

i � 0 � ) is
generally close to the correct value even with 3 days of data; increasing the length of the
observation period to 5 days usually sharpens the PDF, reflecting a reduction in uncertainty.
This trend holds true for small attacks (N 
 102) as well as for large ones (N 
 104). An
exception is Case F, which will be discussed below. The time of attack τ is also identified
quite readily, except for the small-N low-dose Case A. Larger attacks (Cases D, E, and F)
have narrower PDFs for τ compared to Cases A, B, and C. Higher values of ni in Eq. 3
(which generally result from large N attacks) provide structure in L and allow a more ac-
curate estimation of the attack. The dose D is the most difficult parameter to infer. PDFs
for Cases A, B and C in Figs. 8 and 9 show that it is virtually impossible to estimate the
dose for small (N 
 102) attacks; appreciable posterior probability is spread over 5 orders
of magnitude. Table 3 confirms that MAP estimates of the dose in these small attacks are
incorrect. Larger attacks (N 
 104) yield more informative PDFs for D. Note that the sen-
sitivity of C � T � D � to D is rather small for Model A2 (see the expression for S in Eq. 9),
suggesting that dependence of the likelihood function on D will be weak unless ni or M is
large.

Cases D, E, and F (Figs. 9 and 10) demonstrate how early observations of an outbreak may
support multiple hypotheses, and at times favor a “wrong” hypothesis over the correct one.
For instance, Case D exhibits peaks in p � N � at N 0 4 � 103 and N 0 104. Peaks in the
PDF of log10 � D � occur at 1 spore and between 104 and 105 spores. For this case, both
marginal PDFs overwhelmingly favor a large N, low-dose attack, which is the correct char-
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Table 2. Time series obtained from six different outbreaks, simulated with the parameters 1 N 2 τ 2 D 3
as noted at the bottom of the table. The table has been divided into 24-hour sections, where the n i
in each section are summed to produce the low-resolution time series (24-hour resolution) used to
investigate the effect of temporal resolution. Time is measured in days and dose in spores.

time Case A Case B Case C Case D Case E Case F

0.00 1 1 1 1 2 1
0.25 0 2 2 7 13 7
0.50 0 1 1 12 18 24
0.75 1 1 1 39 39 29
1.00 2 2 2 50 38 60
1.25 0 3 3 77 64 96
1.50 1 2 3 77 84 153
1.75 2 1 1 98 116 164
2.00 1 1 2 126 130 193
2.25 1 1 2 162 137 223
2.50 2 3 3 146 141 258
2.75 3 1 4 148 160 302
3.00 2 1 3 149 190 299
3.25 1 3 3 163 175 312
3.50 1 1 2 181 182 304
3.75 1 1 3 162 201 335
4.00 2 1 2 165 200 373
4.25 1 5 5 177 238 340
4.50 1 4 4 169 202 327
4.75 3 2 2 217 216 332
5.00 1 1 1 167 217 350
5.25 1 3 4 182 237 321
5.50 1 1 5 163 207 316

N 100 100 100 10,000 10,000 10,000
τ -0.75 -2.25 -2.25 -0.5 -1.0 -1.25
D 1 100 10,000 1 100 10,000
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acterization. A similar minor ambiguity is observed in Case E. Marginal PDFs in Case F
(Figure 10) are much more strongly bimodal, however. In Figure 11 we plot the joint pos-
terior density p � N � log10 � D ��� to examine correlations among these parameters; it clearly
shows two distinct islands—one corresponding to a large-N low-dose attack, and the other
corresponding to a small-N high-dose attack. Up to Day 5, the data favors the wrong hy-
pothesis (a larger, low-dose attack) over the correct one. Note also that the large low-dose
attack corresponds to larger (i.e., later) values of τ, as evidenced by the posterior density
p � τ � for Days 3–5 (Figure 10, right column). With more data (Day 6 and 7), the correct val-
ues for

�
N � τ � log10 � D �	� are recovered, with peaks at N 0 104, τ 04� 1 � 2, and log10 � D �50 4.

However, such a long observation period would not be relevant for consequence-planning
purposes. We stress that a Bayesian analysis is free to identify competing hypotheses, and
that the degree of belief assigned to each is determined by the data and the prior informa-
tion. In a partially observed attack, the MAP estimate may be erroneous, especially if data
is scarce. One possible remedy is the use of informative priors for N, τ, and/or log10 � D �
instead of the broad uniform priors used here. Otherwise, natural ambiguities may remain
and should be accounted for in consequence management plans based on these inferences.

Coarser time resolution (∆t 
 24 hours instead of 6 hours) was investigated in [86] and
generally yielded only a mild degradation in the smoothness of the PDFs. In cases where a
multimodal PDF evolves into a unimodal PDF over time (e.g., Cases D, E, and F), evolution
is more rapid when the observations are collected in 6-hour intervals.

To summarize, solution of the inference problem successfully provides N and τ for small
and large attacks. D can be estimated for large attacks. Posterior PDFs are sharper for large
attacks and for high-dose attacks. Higher temporal resolution may smoothen the PDFs
slightly. When conditioning on a short time series, the Bayesian method may suggest
multiple hypotheses, supported to differing degrees by the data. In some cases, e.g., Case
F, the data might initially support the wrong hypothesis, but the correct characterization is
recovered as more data become available.

4.4 Inference of attack parameters under variable doses

In this section we conduct eight tests corresponding to more realistic conditions. In the
first four (Cases I, Ia, II, and IIa) we relax the assumption of a constant dose D; instead,
the infected people receive a range of doses commensurate with atmospheric dispersion.
However, the disease is still assumed to evolve per Wilkening’s Model A2, with the same
model providing C � T � D � to the inference procedure. In the second set of tests (Cases III,
IIIa, IV, and IVa), we retain distributed doses and additionally relax the second assumption:
data are generated with Model D, while the inference procedure still uses Model A2 to
evaluate the incubation period distribution. This mismatch introduces a degree of realism
into the inference process since the host-pathogen interaction for humans and anthrax will
seldom be characterized accurately.

In order to obtain a realistic distribution of doses in a geographically distributed population,
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Table 3. Cases A–F; MAP estimates and 90% credibility intervals (in parentheses) for N, τ, and
log10 6 D 7 , conditioned on the high-resolution time series at Day 5. The number in the curly brackets183 is the correct value.

Case N τ log10 � D �
A 70, (39.45 – 123.3) -1.75, (-2.90 – -1.04 ) 0.0, (0.18 – 4.12)�

100 � � � 0 � 75 � �
0 �

B 110, (65.7 – 148.4) -2.0, (-3.1 – -1.33) 0.00, (0.14 – 3.97)�
100 � � � 2 � 25 � �

2 �
C 150, (88.78 – 194.7) -1.75, (-2.85 – -1.22) 0.0, (0.153 – 4.13)�

100 � � � 2 � 25 � �
4 �

D 9800, (9439 – 10,350) -0.50, (-0.85 – -0.44) 0.00, (0.024 – 1.03)�
10 � 000 � � � 0 � 50 � �

0 �
E 10,200, (8396 – 10,890) -0.9, (-1.41 – -0.67) 1.75, (0.87– 3.23)�

10 � 000 � � � 1 � 00 � �
2 �

F 18,500, (10,500 – 19,290) -0.5, (-0.99 – -0.34) 0.75, (0.16 – 3.84)�
10 � 000 � � � 1 � 25 � �

4 �
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Figure 8. Posterior PDFs for N (top), τ (middle), and logD (bottom) based on the time series for
Case A (left) and Case B (right), as tabulated in Table 2. Data are collected at 6-hour intervals in
both cases. The correct values for 1 N 2 τ 2 log10 6 D 793 in Case A are 1 102 2;: 0 < 75 2 100 3 ; in Case B they
are 1 102 2;: 2 < 25 2 102 3 . In both cases, PDFs are reported after 3-, 4- and 5-day observational periods
(dotted, dashed, and solid lines respectively).
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Figure 9. Posterior PDFs for N (top), τ (middle), and logD (bottom) based on the time series for
Case C (left) and Case D (right), as tabulated in Table 2. Data are collected at 6-hour intervals in
both cases. The correct values for 1 N 2 τ 2 log10 6 D 793 in Case C are 1 102 2;: 2 < 25 2 104 3 ; in Case D they
are 1 104 2;: 0 < 05 2 100 3 . In both cases, PDFs are reported after 3-, 4- and 5-day observational periods
(dotted, dashed, and solid lines respectively).
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Figure 10. Posterior PDFs for N (top), τ (middle), and logD (bottom) based on the time series for
Case E (left) and Case F (right), as tabulated in Table 2. Data are collected at 6-hour intervals in
both cases. The correct values for 1 N 2 τ 2 log10 6 D 793 in Case E are 1 104 2;: 1 < 0 2 102 3 ; in Case F they
are 1 104 2;: 1 < 25 2 104 3 . In both cases, PDFs are reported after 3-, 4- and 5-day observational periods
(dotted, dashed, and solid lines respectively), but Case F also includes PDFs at Day 6 (solid lines
with filled squares) and at Day 7 (solid lines with filled circles).
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We clearly see a dual characterization—a larger low-dose attack and a smaller high-dose attack.
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we first simulate an explosive point release of spores at a height of 100 meters with a
Gaussian plume model, thus exposing different numbers of people to varying doses as
described in the Appendix. We see from Figure A.1 that given a quantity of spores, the
number of people infected depends on the total population in the domain, the orientation
of the plume, and the population distribution. A release does not lead to many infected
people if the high concentration isopleths of the plume miss the localized regions of high
population density.

Tables 4 and 5 list the time series obtained from all eight cases. The time series have a
resolution of 6 hours, with successive 24-hour intervals indicated in the tables. As noted in
Appendix A, these cases correspond to two choices of population size (pexposed 
 103 for
Cases Ia, II, IIIa and IV; pexposed 
 104 for Cases I, IIa, III and IVa) combined with two
choices of plume orientation (θ 
 170 > for Cases I, Ia, III and IIa; θ 
 125 > for Cases II, IIa,
IV and IVa). The latter orientation directs the plume over a more population-dense region.
Tables 4 and 5 also report quantiles of the dose distribution D1 � D25 � D50 � D75, and D99. That
is, 1% of the population receives a dose of D1 spores or less, 75% of the population receives
less than D75 spores, and D99 is near the maximum dose. In Figure A.2 (Appendix A), we
plot dose distributions corresponding to the cases given in Tables 4 and 5. Note that while
the doses may easily span two orders of magnitude, about 80% of the infected people lie
within a one-decade range of doses. We will essentially try to estimate a representative
dose D for this range, by fitting the probabilistic model developed in Section 4.1, which
assumes a constant dose. This is a source of model error, adding to the uncertainty caused
by incomplete observations and the inherent stochasticity of the data. This model error is
not expected to diminish with additional data, and thus one of the aims of this investigation
is to quantify it.

4.4.1 Inference of attack parameters without incubation model mismatch

We begin with results from Cases Ia, I, II, and IIa—i.e., eliminating the assumption that
each infected person receives the same dose of anthrax spores, but simulating and inferring
disease progression with Wilkening’s Model A2.

Figs. 12, 13, 14, and 15 show posterior PDFs for
�
N � τ � log10 � D �	� conditioned on the

time series in Tables 4 and 5. Table 6 reports the MAP estimates and the 90% CIs for�
N � τ � log10 � D �	� after 5 days of data. Since the true doses are distributed, we use the

log of the median dose, log10 � D50 � , as a reasonable value for comparison to the posterior
log10 � D � .
First consider Figs. 12 and 13, corresponding to Cases Ia and I. These attacks have similar
dose distributions but differ by an order of magnitude in N. In both cases, the MAP esti-
mate of τ nearly coincides with the true value after only 3 days of data. In Case Ia, the MAP
estimate of N deviates from the true value by approximately 20%, but the 90% CIs bracket
the correct N quite easily. In Case I, the PDF for N initially favors an inaccurate charac-
terization (a peak at N 0 4000) but by Day 5, assumes a bimodal shape with a peak close
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Table 4. Time series obtained from eight simulated outbreaks with variable doses. Cases I, Ia, II,
and IIa are simulated using Wilkening’s Model A2, with the attack parameters—N, τ, and the dose
distribution—indicated at the bottom of the table. Cases III, IIIa, IV and IV are simulated using
Wilkening’s Model D. D̄ is the average dose for the N infected individuals. The table has been
divided into 24-hour sections, where the values ni in each section can be summed to produce the
low-resolution time series used to investigate the effect of temporal resolution. The dose distribution
is represented by its quantiles D1, D25, D50, D75, and D99; x% of the population receives a dose of
Dx or less. Table 5 continues the time series from Day 5 to Day 8.

Time (days) Case Ia Case I Case II Case IIa Case IIIa Case III Case IV Case IVa

0.0 1 3 2 5 1 1 1 3
0.25 2 3 2 8 1 8 5 14
0.50 0 6 1 8 0 20 6 36
0.75 4 12 5 27 1 16 13 81
1.00 1 14 7 46 3 9 12 77
1.25 2 26 12 57 2 18 14 94
1.50 2 28 9 85 2 28 13 123
1.75 6 49 16 94 1 30 13 132
2.0 6 57 9 133 2 37 17 129
2.25 5 65 20 134 2 27 15 159
2.50 7 68 12 139 4 41 17 126
2.75 6 53 18 163 2 39 14 149
3.0 11 80 15 138 3 34 9 131
3.25 8 62 15 180 2 32 14 129
3.50 9 89 21 140 3 25 16 136
3.75 8 106 16 164 6 33 12 100
4.00 17 70 20 180 4 27 14 125
4.25 12 65 21 136 5 33 11 104
4.50 9 87 8 147 3 33 6 110
4.75 3 87 8 151 5 23 11 106
5.0 6 76 7 127 6 23 15 90
N 318 2989 454 4537 161 1453 453 4453
τ -1.5 -1.5 -1.5 -1.25 -0.75 -0.75 -0.75 -0.5
D̄ 2912.8 2776.8 13,870.5 13,150.4 3603.5 3660.77 16,941 16,532

D1 � 10 � 2 0 � 53 0 � 65 1 � 39 1 � 32 3 � 41 2 � 65 3 � 1 3 � 0
D25 � 10 � 3 1 � 23 1 � 15 3 � 96 3 � 47 1 � 99 2 � 13 9 � 8 9 � 45
D50 � 10 � 4 0 � 29 0 � 26 1 � 34 1 � 24 0 � 33 0 � 35 1 � 65 1 � 57
D75 � 10 � 4 0 � 41 0 � 39 1 � 91 1 � 87 0 � 48 0 � 48 2 � 09 2 � 07
D99 � 10 � 4 0 � 83 0 � 87 5 � 79 5 � 91 0 � 92 0 � 95 6 � 74 6 � 52
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Table 5. Continuation of Table 4 beyond Day 5. Time series obtained from 4 simulated outbreaks
with variable doses. Cases I, Ia, II, and IIa are simulated using Wilkening’s Model A2, with the
attack parameters—N, τ, and the dose distribution—indicated at the bottom of the table. D̄ is the
average dose for the N infected individuals. The table has been divided into 24-hour sections,
where the values ni in each section can be summed to produce the low-resolution time series used
to investigate the effect of temporal resolution. The dose distribution is represented by its quantiles
D1, D25, D50, D75, and D99; x% of the population receives a dose of Dx or less.

Time (days) Case Ia Case I Case II Case IIa

5.25 9 70 16 129
5.50 8 91 8 109
5.75 10 79 9 147
6.00 9 86 12 126
6.25 8 82 13 108
6.50 7 55 9 114
6.75 7 69 7 90
7.0 6 75 8 96

7.25 8 61 6 88
7.50 4 67 6 77
7.75 6 65 8 75
8.00 2 62 6 69

N 318 2989 454 4537
τ -1.5 -1.5 -1.5 -1.25
D̄ 2912.8 2776.8 13,870.5 13,150.4

D1 � 10 � 2 0 � 53 0 � 65 1 � 39 1 � 32
D25 � 10 � 3 1 � 23 1 � 15 3 � 96 3 � 47
D50 � 10 � 4 0 � 29 0 � 26 1 � 34 1 � 24
D75 � 10 � 4 0 � 41 0 � 39 1 � 91 1 � 87
D99 � 10 � 4 0 � 83 0 � 87 5 � 79 5 � 91
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to the correct characterization. Dose is the most difficult parameter to estimate in Case
Ia—the marginal PDF of log10 � D � remains rather broad at all times. In the larger-N Case
I, however, the posterior on log10 � D � at least indicates that the attack is not a low-dose
(i.e., D50 ? ID25) event. Also in Case I, conditioning on the high-resolution time-series
provides more structure to the PDF; the posterior densities on log10 � D � and even on τ are
more prominently bimodal, indicating that inference is inconclusive, and more observa-
tions will be required to obtain a unique characterization. For reference, both Figs. 12 and
13 include a further set of PDFs conditioned on data through Day 7; MAP estimates from
these posteriors generally show even closer agreement with the true values of log10 � D50 �
and N.

Inference is considerably less challenging in Cases II and IIa, corresponding to Figs. 14
and 15. Because the doses are higher (D50 � ID50), the variance of the incubation period
distribution is smaller. The time of attack τ is captured with only 3 days of data, as is
a representative log10 � D � for the large N attack (Case IIa). With 5 days of data, MAP
estimates for N are close to the correct values in both cases, as is the MAP estimate of
log10 D in Case II. Here, conditioning on the higher-resolution time series yielded little
gain over the lower-resolution time series. In Case II, MAP estimates of τ based on 6-hour
data are in fact inaccurate on Days 3 and 4, recovering the correct characterization after 5
days of data.

In general, therefore, many of the behaviors discussed in Section 4.3 are repeated in the
present cases. Dose D is difficult to estimate for small N attacks, while the time τ is always
easy to infer. We can bound the size N of the attack quite accurately for all cases. MAP
estimates of N obtained from 5 days of data are always within 20% of the correct value.
Further, the 90% CIs at Day 5 for N, τ, and log10 � D � almost always bracket the true attack
parameters. Finer temporal resolution ∆t may better capture the evolution of the outbreak,
but has a relatively minor impact on summaries of the posterior; MAP estimates obtained
from the low- and high-resolution time series are similar, as are the 90% CIs. Thus, while
the errors incurred in fitting variable-dose data to a constant-dose inference model are not
negligible, the current formulation provides a reasonable and useful characterization of the
BT attack.

4.4.2 Inference of variable dose attack with incubation model mismatch

We now proceed to Cases III, IIIa, IV, and IVa. As noted above, these cases introduce a sys-
tematic difference between the simulated evolution of the disease in infected persons and
the model used to interpret the observed data. We simulate BT attacks using Wilkening’s
Model D (i.e., sampling the incubation period distribution in Eq. 5), but infer the attack
parameters using Model A2. As in Section 4.4.1, the infected population receives a distri-
bution of doses (see Appendix A) but the model used in the inference process assumes a
constant dose.

Figs. 16 and 17 show posterior PDFs for
�
N � τ � log10 � D �	� conditioned on the time series
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Figure 12. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on the time series
for Case Ia, as tabulated in Tables 4 and 5. Lower-resolution data (collected in 24-hour intervals)
yields the PDFs on the left, while higher-resolution data yields the PDFs on the right. Correct
values for 1 N 2 τ 2 log10 6 D 793 are 1 318 2;: 1 < 5 2 3 < 46 3 , where the “correct” representative dose is taken
to be log10 6 D50 7 . In both cases, PDFs are reported after 3-, 4-, 5-, and 7-day observational periods.
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Figure 13. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on the time series
for Case I, as tabulated in Tables 4 and 5. Lower-resolution data (collected in 24-hour intervals)
yields the PDFs on the left, while higher-resolution data yields the PDFs on the right. Correct
values for 1 N 2 τ 2 log10 6 D 793 are 1 2989 2;: 1 < 5 2 3 < 41 3 , where the “correct” representative dose is taken
to be log10 6 D50 7 . In both cases, PDFs are reported after 3-, 4-, 5-, and 7-day observational periods.
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Figure 14. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on the time series
for Case II, as tabulated in Tables 4 and 5. Lower-resolution data (collected in 24-hour intervals)
yields the PDFs on the left, while higher-resolution data yields the PDFs on the right. Correct
values for 1 N 2 τ 2 log10 6 D 793 are 1 454 2;: 1 < 5 2 4 < 13 3 , where the “correct” representative dose is taken
to be log10 6 D50 7 . In both cases, PDFs are reported after 3-, 4-, 5-, and 7-day observational periods.
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Figure 15. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on the time series
for Case IIa, as tabulated in Tables 4 and 5. Lower-resolution data (collected in 24-hour intervals)
yields the PDFs on the left, while higher-resolution data yields the PDFs on the right. Correct values
for 1 N 2 τ 2 log10 6 D 793 are 1 4537 2;: 1 < 25 2 4 < 09 3 , where the “correct” representative dose is taken to be
log10 6 D50 7 . In both cases, PDFs are reported after 3-, 4-, 5-, and 7-day observational periods.
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Table 6. Cases I, Ia, II, IIa; MAP estimates and 90% credibility intervals (in parentheses) for N,
τ, and log10 6 D 7 conditioned on data through Day 5. Correct values for N and τ are in 1@3 . The
“correct” representative dose is taken to be log10 6 D50 7 , also in 1A3 .

Case N τ log10 � D �
Ia (6-hr resolution) 400, (233.6 – 581.9) -1.5, (-2.00 – -0.795) 3.0, (0.37 – 3.99)

Ia (24-hr resolution) 400, (230.4 – 582.2) -1.5, (-2.04 – -0.78) 2.75, (0.32 – 4.00)�
318 � � � 1 � 5 � �

3 � 46 �
I (6-hr resolution) 4100, (2334 – 4439) -1.4, (-1.57 – -0.64) 4.00, (0.715 – 4.147)

I (24-hr resolution) 4000, (2281 – 4358) -1.4, (-1.59 – -0.70) 4.00, (0.91 – 4.173)�
2989 � � � 1 � 5 � �

3 � 41 �
II (6-hr resolution) 400, (305.5 – 981.6) -1.5, (-1.98 – -1.08) 4.25, (0.68 – 4.72)
II (24-hr resolution) 400, (327.0 – 984.7) -1.6, (-2.10 – -1.03) 4.25, (0.36 – 4.69)�

454 � � � 1 � 5 � �
4 � 13 �

IIa (6-hr resolution) 3900, (3686 – 4340) -1.3, (-1.48 – -1.14) 4.25, (4.05 – 4.72)
IIa (24-hr resolution) 4000, (3709 – 4433) -1.5, (-1.55 – -1.18) 4.25, (4.04 – 4.72)�

4537 � � � 1 � 25 � �
4 � 09 �
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in Table 4. As described in the preceding section, finer resolution in the time series does
not have a great impact on the posterior, and hence we only plot PDFs resulting from
daily observations in each case. Several features are worth highlighting. First, the dose is
identified much more closely in Cases IV and IVa, where both N and log10 � D � are higher,
than in Cases III and IIIa. Indeed, p � log10 � D ��� in the low-dose small-N Case IIIa remains
broad at all times. In Case III, after only 3 days of data, we observe a dual characterization
of the outbreak: N 0 700 and, to a larger extent, N 0 2000. However, p � N � becomes
unimodal as additional data become available. In fact, PDFs for all three parameters in
all four cases are unimodal by Day 5. The resulting MAP estimates and 90% CIs for�

N � τ � log10 � D �	� are reported in Table 7. In contrast to Section 4.4.1, MAP estimates for N
and τ are not within 20% of the true values. With the exception of Case IIIa, N is smaller
than it should be, and in all cases τ is more negative than it should be.

A qualitative explanation for these discrepancies is advanced as follows. Since Model A2
predicts shorter incubation periods than Model D (recall Figure 7), the epidemic curve as
simulated with Model D will rise more slowly that predicted by Model A2. When this
data is interpreted using Model A2, it is reasonable to expect the posterior to compensate
for the slower rise by underestimating N, i.e., by suggesting a smaller outbreak. Simulta-
neous estimation of D and τ raises a few additional complications, however. Recall that
the posterior of D is centered quite close to its true value in Cases IV and IVa, and to a
lesser extent in Case III. But in the likelihood function, this dose enters the wrong model.
Using a “correct” dose in Model A2 is akin to using a much larger dose in Model D; both
situations yield shorter incubation periods. Now draw a parallel with Case F in Section 4.3.
There, we found that a large-dose small-N attack and a small-dose large-N attack gave rise
to very similar patient data during the first five days of an outbreak. Moreover, we found
that N and τ were positively correlated (and that both were negatively correlated with D):
the small-N mode of the posterior also favored more negative τ, i.e., attacks that occurred
approximately one day earlier. The very same correlations affect inference in the present
cases. Incubation model mismatch is roughly equivalent to an overestimation of D, which
is compensated for by underestimating N and τ.

In summary, Table 7 shows that MAP estimates for N are typically within a factor of two
below the true result and that τ is estimated roughly a day too early.

4.5 The Sverdlovsk anthrax outbreak of 1979

We now address the characterization of the Sverdlovsk anthrax outbreak. It is suspected
that on 2 April 1979, a high-grade anthrax formulation was accidentally released from a
military facility in Sverdlovsk (today, Yekaterinburg), Russia. The resulting outbreak lasted
42 days, and patient data was collected on a daily basis [7]. Characterizing the Sverdlovsk
case presents significant challenges. It corresponds to a low-dose “attack” infecting fewer
than 100 people. Wilkening [42] estimates that the average dose was either around 2–3
spores, based on his Model A, or around 300 spores based on his Model D; Meselson [7]
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Figure 16. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on daily time series
for Case IIIa (left) and Case III (right). Correct values for 1 N 2 τ 2 log10 6 D 793 are 1 161 2;: 0 < 75 2 3 < 52 3
(Case IIIa) and 1 1453 2;: 0 < 75 2 3 < 54 3 (Case III), where the “correct” representative dose is taken to
be log10 6 D50 7 . In both cases, PDFs are reported after 3-, 4-, and 5-day observational periods (dotted,
dashed and solid lines respectively).
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Figure 17. Posterior PDFs for N (top), τ (middle), and log10 D (bottom) based on daily time series
for Case IV (left) and Case IVa (right). Correct values for 1 N 2 τ 2 log10 6 D 793 are 1 453 2;: 0 < 75 2 4 < 22 3
(Case IV) and 1 4453 2;: 0 < 5 2 4 < 20 3 (Case IVa), where the “correct” representative dose is taken to be
log10 6 D50 7 . In both cases, PDFs are reported after 3-, 4-, and 5-day observational periods (dotted,
dashed and solid lines respectively).
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Table 7. Cases III, IIIa, IV, and IVa: MAP estimates and the 90% credibility intervals (in paren-
theses) for N, τ, and log10 6 D 7 conditioned on data through Day 5. Correct values for N and τ are in1A3 . The “correct” representative dose is taken to be log10 6 D50 7 , also in 1B3 .

Case N τ log10 � D �
IIIa (6-hr resolution) 170, (130.1 – 243.6) -1.5, (-2.3 – -0.86) 2.0, (0.23 – 3.74)
IIIa (24-hr resolution 170, (125.1 – 238.8) -1.5, (-2.4 – -0.94) 2.5, (0.255 – 3.78)�

161 � � � 0 � 75 � �
3 � 52 �

III (6-hr resolution) 780, (722 – 945.5) -1.7, (-2.03 – -1.42) 4.25, (4.02 – 4.723)
III (24-hr resolution 760, (701 – 891.7) -1.6, (-1.91 – -1.31) 4.25, (4.04 – 4.724)�

1453 � � � 0 � 75 � �
3 � 54 �

IV (6-hr resolution) 330, (297.2 – 668.6) -1.7, (-2.23 – -1.40) 4.5, (1.4 – 4.72)
IV (24-hr resolution) 330, (296.3 – 705.3) -1.7, (-2.26 – -1.38) 4.5, (1.45 – 4.72)�

453 � � � 0 � 75 � �
4 � 22 �

IVa (6-hr resolution) 2900, (2728 – 3056) -1.5, (-1.90 – -1.1) 4.5, (4.275 – 4.725)
IVa (24-hr resolution) 2900, (2741 – 3064) -1.5, (-1.97 – -1.26) 4.5, (4.275 – 4.725)�

4453 � � � 0 � 5 � �
4 � 20 �

estimates 100–2000 spores as the likely dose. The first patient presented symptoms on 4
April 1979. Around 12 April, tetracycline was administered around Sverdlovsk; around 15
April, people were vaccinated. These prophylactic measures probably cured a few people
and increased the incubation period in others. Further, the available data almost certainly
contains some recording errors. Errors in the data, the effect of prophylaxis (which is
not modeled in our likelihood function), and the small size of the infected population are
expected to stress our inference process.

In Figure 18 we plot the posterior densities of N and τ based on the data in [7]. Model A2 is
used for inference. After 9 days of data, the MAP estimate for N centers around 50, though
the earlier PDFs underestimate N. The 90% CI for N is C 41 � 15 � 66 � 49 � . In comparison, 70
people are believed to have died [7, 35] and 80 are believed to have been infected [35].
The time of release was easy to infer (the MAP estimate of τ is � 2, i.e., 2 April 1979); the
90% CI for τ is CD� 3 � 22 ��� 1 � 38 � . PDFs for the dose (omitted here) were indeterminate (the
90% CI for log10 � D � spans C 0 � 18 � 3 � 5 � ); further, the average dose at Sverdlovsk is unknown.
However, by 13 April (i.e., Day 9, the day of the start of the prophylaxis campaign and 2
days before the vaccination campaign), our estimate for N is certainly within a factor of
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two of the correct value, and it is clear that the outbreak will affect fewer than 200 people.
However, approximately 59,000 people in the Chkalovskiy raion were impacted by the
medical measures; 80% were vaccinated at least once [7].

Guillemin [82] documents the public health response undertaken by the Soviet authorities
once the Sverdlovsk epidemic was detected. In conjunction with the quantitative analysis
presented in this section, [82] illustrates the difficulties and pitfalls faced by medical re-
sponders when the origin and the extent of an epidemic are unknown. Without a model
for inhalational anthrax, observations of symptomatic patients could not be used to prove
(or disprove) any hypothesis regarding the epidemic’s genesis. Indeed, Soviet authorities
held that the epidemic was caused by infected meat and spent considerable effort search-
ing for it. The response also prompted a significant external component, engaging many
medical personnel and officials from outside Sverdlovsk; yet by Day 4 (8 April 1979) it
was clear that the epidemic was small (Figure 18, left) and could be handled by local au-
thorities. (Sverdlovsk was a military-industrial city with a population of 1.2 million [7].)
Guillemin [82] also describes efforts to disinfect buildings and trees by hosing them down
with disinfectants; yet with knowledge of τ (Figure 18, right) and meteorological condi-
tions, the bounds of the affected region could have been established (as Meselson did in
1994 [7]) and the public health response suitably targeted. Therefore, a quantitative model
and an inferential capability could have been of assistance in 1979. The lessons are equally
applicable in contemporary bioterror scenarios.

Size of attack (N)

p
(N

)

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05
Day 2
Day 4
Day 9

Time of attack (τ)

p
(τ

)

-8 -7 -6 -5 -4 -3 -2 -1 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Day 2
Day 4
Day 9

Figure 18. PDFs of N (left) and τ (right) for the Sverdlovsk outbreak.
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5 Characterizing outbreaks from partial observations:
the case for contagious diseases

In Section 4, we described how one may estimate the characteristics of an outbreak caused
by a (nearly) instantaneous infection of N individuals from partial observations. While the
analysis assumed that the disease was non-contagious, the same approach could also be
applied quite easily to a contagious disease provided the incubation period of the disease
was larger than the period of observation/data collection; in such a case, the time-series
would consist solely of the index cases and consequently, the problem would be no different
from the one for non-contagious diseases.

The difference between an outbreak of a non-contagious disease and a contagious one
is, of course, the ability of the disease to spread. The spread of a disease depends on
the intrinsic transmissibility of the pathogen (for example, the common cold spreads far
more easily than tuberculosis) as well as the mixing patterns of the population that allow
the transmission of the pathogen. The mixing pattern can be enormously influential in
deciding the spreading rate – smallpox epidemics have exhibited reproductive ratios R0
varying between 3 and 17 [9] and consequently, when characterizing an outbreak of a
contagious disease, it becomes necessary to infer both the transmissibility of the pathogen
and the social mixing pattern. This is particularly true if the pathogen is an emerging
one (e.g., avian flu) which may be expected to undergo evolutionary changes (affecting
transmissibility) from outbreak to outbreak, over time.

Epidemics of contagious diseases are conventionally simulated with SEIR models. An
individual in a population is expected to be in one of the four states (Susceptible–Exposed–
Infectious–Removed). Removal can mean death or recovery. The time spent by an individ-
ual in the exposed and infectious states are assumed to be random variables. Often they are
modeled as exponential distributions, though realistic (observed) distributions tend to be
better modeled with log-normal or Γ distributions. The evolution of the fractions of a pop-
ulation in these categories are governed by a system of ordinary differential equations [12],
where the effect of pathogenic transmissibility and mixing in a population in determining
the spread are “lumped together” in a basic reproductive number R0. These models are
generally applicable in large epidemics where homogeneous mixing of a population can be
safely assumed. Network models (e.g., [89]; also see Section 2.3), on the other hand, con-
sist of individual members of a population linked into social network which reflects their
mixing pattern; transmission occurs along the links in a probabilistic manner. Individual-
based models [25] are even more detailed, involving pathogen-load dynamics inside each
individual and transmission of the disease via contamination of shared locations.

In this section, we will formulate a statistical inverse problem to infer the transmissibility of
a pathogen as well as the mixing pattern. We will adopt a network model of the epidemic,
since it is the simplest one that explicitly separates transmissibility from mixing. This
formulation is based on the one in [60], but extends it in the following ways:

65



1. We will use SEIR models, instead of SIR.

2. We will model the disease realistically, using Γ distributions for the incubation and
removal periods (i.e., the exposed and infectious states respectively, rather than ex-
ponential distributions.

3. We will incorporate a structured population.

Below, we describe the context from which the data (observations of an epidemic) were
extracted. Thereafter, we formulate the inverse problem.

5.1 The data: the Abakaliki smallpox outbreak of 1967

Between April and June, 1967, a smallpox outbreak with 32 cases occurred in the town
of Abakaliki (pop. 31,200) in Nigeria [90]. Thirty of the 32 cases belonged to the Faith
Tabernacle Church (FTC), a religious group that refused vaccination and medical treatment.
The FTC members (a total of 74) lived in 7 large “compounds,” often with many non-FTC
members (total over 7 compounds: 92); however, social contacts between them were rare.
The FTC members were closely related and visited each other; four times a week they
gathered at the church. The index case (Case 0) in Abakaliki came to live in Compound 1
on April 2nd, 1967; by April 5th, (Day 0) she had developed a macular rash. Thereafter,
smallpox spread in Compound 1. On Day 25, a family seemingly free of smallpox moved
to Compound 2, where on day 26 and 30, the children developed clinical signs of smallpox.
Thereafter, smallpox spread in Compound 2. The last case occurred on June 20, Day 76.
No medical interventions were instituted until Case 11; thereafter, smallpox cases were
somewhat tardily isolated at the hospital. This was the only concession FTC members
made to the health authorities; they steadfastly refused to be vaccinated. Many of the FTC
members were vaccinated (35 out of 74), but the smallpox cases generally were not. Only
the dates of appearance of symptoms were recorded and the fate of the smallpox cases
are unknown (no deaths were reported (!)). A tabulation of the dates of appearance of
symptoms, as well as the possible duration of the contagious period (since we do not know
of the cases’ fates) are available in [2]. The 2 non-FTC smallpox cases were associated
with FTC members; one (Case 20) operated a booth in the market opposite Case 1, while
the second, Case 27, washed clothes for the people in Compound 1.

To test our technique, we will slightly idealize the problem. We will ignore the non-FTC
population (including the 2 cases) and treat the FTC community as a closed population.
We will assume that a social network, modeled as a binomial random graph with a link
probability of pin, exists within each compound; cross-compound social links exist, also as
a binomial random graph, with a link probability of pout . The spread of infection along a
social link is modeled as a Poisson process, with rates βin � βout for in-compound and out-
of-compound social links respectively. Each of 30 cases have unknown dates of infection
and removal Ii � Ri � i 
 1 ���
� 30, while their dates of exhibition of symptoms Si forms the
evidence on which the inverse problem is predicated. The other (unobserved) parameters

66



Table 8. Means and standard deviations of the incubation, prodromal and contagious/symptomatic
periods for smallpox. These were obtained from [2].

Disease state Mean Std. Dev.

Incubation period, tI 11.6 1.9
Prodromal period, tP 2.49 0.88
Contagious period, tC 16.0 2.83

of this stochastic epidemic model are the social network G and the infection pathway P . We
model the behavior of smallpox as “latent” period (non-contagious), which corresponds to
the sum of the incubation and prodromal periods and the contagious period. The incubation,
prodromal and contagious/symptomatic periods are assumed to be Γ distributed, with the
means and standard deviations in Table 8; these were obtained from [2].

5.2 Formulation of the inverse problem

Let I be the set of infection dates Ii for the 30 cases. Let R be the set of dates of removal
and S, the dates when the cases showed symptoms (the evidence). Then, if two cases j
and k were known to have a social link between them, then the likelihood that j showed
symptoms on S j, conditioned on the infection date Ik and transmission rate β jk is

L E A FE j G k F � S j � β jk � Ik � 
 β jk exp � � β jk � Ik � S j ���
where β jk 
 βin or βout depending upon whether j and k belong to the same of different
compound. Thus the likelihood of observing S, given the infection pathway (the directed
graph of links j H k over which the disease has been transmitted) P

L E A F � S � I �JIβ � P � 
 ∏E j G k FLK P
exp � � β jk � Ik � S j ��� (10)

where Iβ 
 �
βin � βout � and � j � k � denotes the directed link j H k.

P contains a subset of the links in G , the undirected graph of social contacts, over which
disease transmission occurred; the other links in G did not transmit the disease. This in-
cludes links � j � k � between two nodes (people) who never contracted the disease, links
where j M P but k is not (and thus transmission over � j � k � never occurred) and j � k M P but
link � j � k �N%M P . Given our Poisson process model of transmission over links, the probabil-
ity of escaping infection, having been in contact for time τ jk, is exp � � β jkτ jk � . Thus the
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likelihood of observing S given I � R �;Iβ � P � G is

L E B F � S � I � R �JIβ � P � G � 
 ∏E j G k FLK G O P G j K P
exp � � β jkτ jk �	�

τ jk 
 max � min � Ik � R j ��� S j � 0 � (11)

where � j � k �BM G P P are the set of links that exist in G but not in P . For j who never
contracted the disease, I j 
 ∞ in Eq. 11.

Let a social network G contain n 
 �
n1 � n2 ���
��� n7 � in-compound links in the 7 compounds

and m 
 �
m1 � m2 ������� m7 � out-of-compound links. Then given p 
 �

pin � pout � , the proba-
bility of observing G is

L E E F � G �p � 
 7

∏
i � 1

pni
in � 1 � pin � C E Ni FL� ni pmi Q 2

out � 1 � pout � D E Ni Gmi F (12)

where

C � Ni � 
  Ni
2

! �
D � Ni � mi � 
 Ntot � Ni � Ni � mi

2
� (13)

Ni is the FTC population in Compound i and Ntot 
 74 is the total FTC population.

Since an infection pathway P is always contained in G , we set the probability of observing
P , conditioned on G i.e L E F F � P �G � 
 1.

The probability of observing a set of symptom time S, conditioned on the set of infection
and removal times, is given by

L E D F � S � I � R � 
 30

∏
i � 1

pl � Si � Ii � pR � Ri � Si � (14)

where pl � t � and the pR � t � are the PDFs of the latent and contagious periods of smallpox.

Thus the probability of observing S is

L � S � I � R �JIβ � p � P � G � 
 L E A F L E B F L E D F L E E F � (15)

Using Bayes theorem, we can derive an expression for the joint posterior probability for
I � R � Iβ � p � P � G conditioned on S is

p � I � R � Iβ � p � P � G � S � ∝ L � S � I � R � Iβ � p � P � G � πI � I � πR � R � πβ � Iβ � πp � p � (16)
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where the various π � �
���R� are PDFs representing prior beliefs regarding the various parame-
ters.

Given the data (in Section 5.1), it is realistic to assume that βin S βout and pin S pout . We
express these relations as

βin 
 � 1 � r � βout � r S 0 � βout S 0
pout 
 ρpin � ρ ? 1 � pin ? 1 (17)

and introduce them into Eq. 16 to derive an expression for the posterior distribution
p � I � R � r� βout � pin � ρ � P � G � S � as

p � I � R � r� βout � pin � ρ � P � G �S � ∝
L � S � I � R � r� βout � pin � ρ � P � G � πI � I � πR � R � πr � r � πβout � βout � πpin � pin � πρ � ρ � (18)

We employ uniform distributions for all the priors. Incubation periods I are believed to
lie uniformly between 0 and 30 days, while the removal period R, between 0 and 40. The
prior for r is a U � 0 � 40 � , while that for βout is U � 0 � 10 � . The priors for both ρ and pin are
U � 0 � 1 � .
The solution to the inverse problem lies in evaluating p � I � R � r� βout � pin � ρ � P � G � S � in Eq. 18
for various values of the independent variables. Given its high dimension, this is intractable;
instead we draw samples from the distribution p � I � R � r� βout � pin � ρ � P � G � S � using a simple
Markov chain Monte Carlo method and histogram them to develop PDFs for βin � βout � pin
and pout .

Given our choice of priors, the posterior distribution in Eq. 18 cannot be easily expressed
in terms of canonical distributions and hence we use a Metropolis-Hastings sampler. We
use an independence sampler for the duration of incubation and removal periods as well as
for P and G , in a manner similar to [60]. We also carry out the following transformations:

ξin 
 log � r �T� � ∞ � ξin � ∞
ξout 
 log � βout �T� � ∞ � ξin � ∞
ηin 
 logit � pin �	� � ∞ � ηin � ∞
ηout 
 logit � ρ �T� � ∞ � ηout � ∞

and use a normal distribution as a proposal for the remaining parameters ( Iξ � Iη). The prob-
lem is thus solved using a single-component MH sampler, in terms of I � R � Iξ � Iη � P , and G ,
using a combination of random-walk and independence samplers. The parameters of inter-
est are subsequently reconstructed from them. Note that the priors are expressed in terms
distributions of r� βout � pin and ρ and are transformed to equivalent distributions in Iξ and Iη
in the actual computations.
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5.3 Results

The model and the inverse problem described above in Section 5.2 cannot be solved to
generate useful information, given the data in Section 5.1; there are simply too many pa-
rameters/variables to be inferred from the data. However, the problem can be significantly
simplified by making a few fairly realistic assumptions. These assumptions results in dif-
ferent, simpler problems which can, thereafter, be solved to extract useful information from
the data. These simpler problems are described below.

Problem I: In this case, we simplify the problem by assuming that we have a fully con-
nected population (i.e., ρ 
 1 � pin 
 1). However, in-compound and cross-compound social
links differ in strength and the observed differential rates of spread are accommodated by
having two distinct spread rates i.e., βin � βout , on in-compound and cross-compound links
respectively. This requires that we estimate r and βout from the data. Further, while there
is a unique G (given full connectivity), there may be many possible P . In this model, we
will develop estimates for I � R � βin � βout and the expected value of the disease transmission
chain � P � .

In Figure 19, above, we plot the variation of four parameters as the MCMC chain pro-
gresses. The MCMC chain was run for 20,000 iterations, with a sample being saved every
10 iterations. It is clear that the last 15,000 iterations (i.e., the last 1,500 saved samples)
show proper mixing of the chain and that the samples can be used for drawing inferences.
In Figure 19, below, we plot the samples in a βin � βout space to show the correlation struc-
ture between the two spread rates – we see very little of it. In Figure 20 (above), we plot the
inferred PDFs for the dates of infection and removal of 3 different Cases. While the base
of the PDFs are rather wide (10 days for the dates of infection and 15 for dates of removal),
they are roughly symmetric, unlike the skewed Γ-distributions one observes for incubation
and removal periods i.e., the PDFs are informative. However, both the dates of infection
and removal are largely nuisance variables and the specificity with which we can infer a
value for them is not very important. In Figure 20 (below), we plot the PDFs for both βin
and βout (lines with symbols). The MAP (maximum a posteriori) estimate of βin is roughly
four times larger than the MAP value for βout , corroborating the faster spread of smallpox
inside a compound that was qualitatively observed in the data. However, somewhat non-
intuitively, the PDF for βin is much wider than that of βout – given the preponderance on
in-compound transmission (as indicated by the larger MAP value of βin), one would have
expected the credibility interval on the value of βin to be much narrower. This issue is being
investigated further.

In Figure 21, we plot the expected infection pathway � P � as a directed graph. The 30
Cases (the nodes in the graph) are colored per their compound affiliations. The color of
the links indicates the probability of their existence - all links with a probability of 0.3 or
higher are red and those between 0.1 and 0.3 are blue. We see a clear transmission of the
disease from the index case (Node 000) to other members of her compound (most of the
links originating from Node 000 are red and connect to other members of her compound);
further most red links exists between nodes of the same color, indicating cohabitation in
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the same compound. Cross-compound links are generally blue, indicating less certainty
regarding their existence; however, this lack of certainty is compensated by their larger
number, which enable inter-compound transmission. Also, higher numbered nodes (who
were infected and showed symptoms later) have a larger number of blue links connected
to them (e.g., Node 000 has only one, while Node 029 has four), indicating an inability
to “pin down” the source of their infection as well as the identity of the individuals they
infected. This is expected – as the number of infected individuals increased and became
a substantial fraction of the total population of 74, the infection mechanism approached
those that would be observed in a homogeneously mixed population i.e., where one has an
equal probability of being infected by any contagious individual.

The results presented above were obtained with data collected during the entire 90-day
duration of the epidemic. We now consider partial observations. By Day 40 of the outbreak,
the disease had spread outside Compound 1 and thus there was some (slight) evidence
of inter-compound transmission. Using the data collected by Day 40, we infer the same
parameters. In Figure 20 (below), we plot the PDFs for βin � βout so inferred using lines
without symbols. While the widths of the PDFs are about the same, the MAP value of βin
is about a third smaller, as is the MAP value for βout . The cause for this underestimation
is being investigated, but may be due to errors in the data – while the epidemic started in
early April, 1967, it was reported to the WHO (which gathered the data) in the later part of
May [90]. Further, the date of appearance of symptoms was obtained by interviewing the
families of the Cases rather than by any documentary proof – thus, there was ample scope
for the introduction of “measurement” errors due to faulty memories. In Figure 22, we plot
the expected infection pathway, as obtained from the first 40 days of data.

Problem II: In this case, we investigate a partially connected society. We assume, realisti-
cally, that the rate of spread along a social link is the same i.e βin 
 βout (or alternatively,
r 
 0), and the slower spread of the disease across compounds is due to the paucity of
“strong” social links across compounds. We assume that in-compound mixing is strong –
we have a fully connected social network inside a compound (i.e., pin 
 1) and a sparse
social network exists between individuals across compounds (i.e., ρ � 1). In this case we
infer βout and pout 
 ρ as PDFs. We also generate samples of P as in the previous case, as
well as G . We perform the analysis with the first 40 days of data. For the purposes of the
MCMC chain, the prior on ρ was U � 0 � 25 � 0 � 75 � ; this was done to rule out a fully connected
social network.

We performed an examination of MCMC chain, in a manner similar to Problem I, to ensure
that the chain was mixing and the samples could be used for analysis. As above, the first 500
saved samples were discarded, to account for the “burn-in” period. In Figure 23 (above),
we plot the PDFs for the dates of infection and recovery of Cases 5 and 10 (Case 30 had
no symptoms in the first 40 days). Comparing these PDFs with those obtained in Problem
I, we see that the shape of the PDFs is similar, and the MAP values are for Problem II are
shifted to the right by about 1 day (Problem II infers that infections and removals happened
a day later, compared to Problem I). Thus the two models show very little difference in
the values of the infection and removal dates. In Figure 23 (below), we plot the PDF
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Figure 19. Above: Samples of I10 2 R10 2 βin and βout for Problem I, as the MCMC chain progressed.
We see little autocorrelation and the chains are seen to be mixing well. Below: Scatter plot of
samples of βin and βout . We see very little correlation between the two.
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Figure 20. Above: PDFs for the dates of infection and removal for Cases number 5, 10 and 30
for Problem I. The Cases are denoted by separate colors; plots of removal dates contain a symbol.
While the bases of the PDFs are almost as wide as those of the incubation and removal periods,
the shapes of the PDFs are quite different from the skewed Γ-distributions which are used to model
incubation and removal durations for smallpox. Below: The PDFs for the rates of spread β in and
βout developed from data collected during the entire epidemic (plots with symbols) and from the
first 40 days of data (plots without symbols). The MAP estimate of the spread rates drawn from the
first 40 days may be affected by measurement error in the data.
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Figure 21. The expected infection pathway U P V , drawn from data collected during the entire
epidemic for Problem I. Nodes represent the 30 Cases of the outbreak and are colored by their
compound affiliations. The links in the graphs are colored by their probability of existence – links
with probability of 30% or higher are red while those between 10% and 30% are blue. Most of the
transmissions from the index case (Node 000) are in red, and connect individuals in the same com-
pound. Infection transmissions between the later Cases are almost completely in blue, indicating
the reduction of heterogeneity in the transmission mechanism as a large fraction of the population
became infected.
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Figure 22. The expected infection pathway U P V , drawn from data collected during the first 40
days of the epidemic, for Problem I. Nodes represent the 30 Cases of the outbreak and are colored
by their compound affiliations. The links in the graphs are colored by their probability of existence
– links with probability of 30% or higher are red while those between 10% and 30% are blue. Most
of the transmissions from the index case (Node 000) are in red, and connect individuals in the same
compound. A few red cross-compound links are also evident at this point in the epidemic.
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for βin 
 βout . Comparing with Figure 20 (below), we see that the width of the PDF for
Problem II is similar to that for βin in Problem I, while the MAP value lies in between
the MAP values for βin and βout , though closer to βin if one considers the median value
(3 � 37 � 10 � 3day � 1, as opposed to 4 � 76 � 10 � 3day � 1 for Problem I). This is intuitively
correct, since the bulk of the transmission was in-compound. In Figure 24 we plot the
expected infection pathway � P � . Comparing it to Figure 22, we see that the two are
very similar, but not identical (for example, Node 008 has four in-links in Problem II,
but 3 in Problem I). Again, transmission links can be inferred with high probability only
for the first few Cases; the links connected to the latter Cases are generally blue. Thus
the inferences drawn by the two models are quite comparable. In Figure 25 we plot the
expected social network � G � . As in Problem I, the 74 nodes (individuals in the entire
population) are colored by their compound affiliations. Only cross-compound links which
have appeared in 50% (or higher) of the samples are plotted. A subset of these links, which
were instrumental in disease transmission, appears in Figure 24.
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Figure 23. Above: PDFs for the dates of infection and removal for Case numbers 5 and 10, for
Problem II. The cases are denoted by separate colors; plots of removal dates contain a symbol.
While the bases of the PDFs are almost as wide as those of the incubation and removal periods,
the shapes of the PDFs are quite different from the skewed Γ-distributions which are used to model
incubation and removal durations for smallpox. Below: The PDFs for the rate of spread β in W βout .
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Figure 24. The expected infection pathway U P V , drawn from data collected during the first 40
days of the epidemic, for Problem II. Nodes represent the Cases of the outbreak and are colored
by their compound affiliations. The links in the graphs are colored by their probability of existence
– links with probability of 30% or higher are red while those between 10% and 30% are blue.
Most of the transmissions from the index case (Node 000) are in red, and connect individuals in
the same compound. Infection transmissions between the later Cases are almost completely in blue,
indicating the reduction of heterogeneity in the transmission mechanism as a large fraction of the
population became infected.

78



Figure 25. The expected social network U G V , drawn from data collected during the first 40
days, for Problem II. Nodes represent the 74 members of the population and are colored by their
compound affiliations. Links in the graphs represent the cross-compound social links seen in 50%
(or higher) of the samples.
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6 Conclusions

Simulations with individual-based models yield detailed predictions of where on the so-
cial network disease will spread as well as the transmission chain information and struc-
ture necessary to perform source inversion problems. They are potentially valid when the
well-mixed assumptions of (deterministic) differential equations are inappropriate. In Sec-
tion 3 we present smallpox simulation results from our individual-based model, which
we designed to be parallel scalable and to investigate the effect of social contact network
structures and reduced-order modeling. A static unipartite graph formulation demonstrated
comparable performance to a more computationally costly dynamic bipartiite formulation,
though with the loss of geographic location information. Static person-to-person contact
graphs with basic probability of transmission models still offer individual resolution and
contact tracing ability. Results for network sampling (model reduction) indicate that qual-
itatively similar predictions are possible for both geographic spread and population count
epidemic spread. However, appropriately scaling the simulation to the reduced network
remains a challenge. Our simulation demonstrates that individual-based models can scale
well in parallel, if appropriate communication patterns are used.

We favor the term “individual-based” for our models since, with the exception of choosing
when to seek medical care or self-quarantine, disease progression is uninfluenced by au-
tonomous decision, and we include no cognitive models. However, we offer some conclud-
ing remarks on agent-based models in general. Agent-based models typically implement
local learning, adaptation, and interaction rules, but can exhibit global emergent (complex
adaptive) behavior. They are useful for modeling social systems and networks, traffic and
transit systems, economies and governments, supply chains and logistics, and even systems
of systems, e.g., the nuclear fuel cycle or operational fleets. Agent-based models closely
align with structures present in these kinds of systems.

While often intuitive, agent-based models can be complex, and all but the simplest transi-
tion models are challenging to analyze. Other criticisms and potential limitations include:� lack of detailed quantitative information needed to define agent behavior (especially

for human decision-making models);� stochastic nature mandates simulation ensembles to characterize outcomes instead of
single calculations;� computational intensity; and� they are not thought of as prescriptive models in the typical engineering sense and
there is no clear way to invert to identify parameters.

Perhaps the greatest challenge with agent-based models is performing verification and vali-
dation to ensure credibility for their intended use. Verification assesses whether the “right”
solution to the mathematical formulation implemented has been found. Code verification
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can largely (though not entirely) be addressed through good software development prac-
tices. Solution verification, however, presents a problem. There is no clear analog to order
of convergence or method of manufactured solutions. While not rigorous, steps toward ver-
ification might include: testing network models by creating carefully structured networks,
where transmission paths and incubation rates would be appropriately modeled by an ODE
model; or testing cases where analytic or well-established solutions apply. These, however,
will not exercise the full extent of an agent-based model (stochasticity, dynamic contacts,
emergent behavior, etc.).

Credibility checks on models require data for both individual agent, connectivity, and
system-level model validation. This is rare in the context of eradicated or emergent dis-
eases, though there are some exceptions [91]. At least for social networks, data might be
gathered from studies in a controlled population, perhaps in observational studies of ru-
mors or other information dissemination. Engineering hierarchical validation approaches
may offer some help. Also, methods for validating stochastic simulations are needed: one
can only examine output summary statistics or distributions, and must therefore employ
appropriate statistical measures.

Applications of social network-based simulations reach far beyond disease modeling; de-
veloping verified and validated predictive capability is crucial. Ultimately, practitioners
will demand best-estimate predictions with quantified uncertainty, especially when model
details are not well known.

In Section 4 we have developed a Bayesian approach to characterize bioterror attacks from
a time series of diagnosed patients. Our tests with anthrax show that an observation period
of 3–5 days may be sufficient to estimate the number of asymptomatic infected people, the
time of infection, and a representative dose, and to provide quantified uncertainty intervals
around these estimates; in the absence of an accurate disease model, we may arrive within a
factor of two of the size of the attack. The resolution of the time series of diagnosed patients
has a small impact if the disease model is accurate; otherwise, model errors dominate.

This Bayesian approach is amenable to many potential extensions and improvements. In-
formative prior distributions for N and τ, drawn from syndromic surveillance data, may
increase the efficiency of the inference process. The ability to “fuse” disparate sources of
data via prior distributions contributes significantly to the robustness of Bayesian inference
in data-starved environments. One could also incorporate atmospheric transport processes
into the likelihood function, thus using the spatial locations of diagnosed patients to guide
posterior estimates, though for urban terrains this could lead to very involved computations.
Also, the present approach can immediately be applied to other noncontagious diseases, as
well as to contagious diseases with long incubation periods, such as smallpox, where sec-
ondary cases do not appear in the early time series of patient data.

The Bayesian inference method developed in Section 5 is novel, in the sense that it explic-
itly accounts for the role of pathogenic transmissibility and mixing in the spread of a disease
and infers them from the data. These two variables could also be used, independently – the
link probabilities inferred in Section 5 (Case II) could easily be used in a network epidemic
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model for any other disease (e.g., influenza). The inference of the transmissibility, β, can
be easily used to track the evolution of the transmissibility of emerging infectious diseases;
in fact, such efforts have already commenced [51, 52, 53, 54]. Further, the inference of
a transmission chain can often be helpful in identifying the mechanism of transmission.
For example, in-family transmission is not very strong for Ebola, since it mainly spreads
via contaminated bodily fluids, most commonly when preparing a contaminated corpse for
final disposal. This is generally done by the women of a village [92], leading to strong
cross-family transmission. Such a mechanism would be reflected in both Iβ and � P �
and would be helpful in detecting the actual mechanism. Thus, while our intention was to
apply our approach to counter bioterrorism, there is little to prevent its use with emerging
infectious diseases.

The importance of quantitatively characterizing a BT attack was explicitly identified in the
“Dark Winter” exercise [8]. Participants sought the ability “. . . to immediately predict the
likely size of the epidemic on the basis of the initial cases; to know how many people were
exposed.” Thus the primary utility of our inference procedure is within a response plan
framework. Response to a BT attack would typically involve confirmatory testing and lo-
gistics (the transport of medical materials and personnel), both of which could be better
targeted by a quantitative characterization of the attack. By placing the estimated origin of
an attack in the context of a transportation network, one could predict the location of future
patients and guide prophylactic activities accordingly. The probabilistic characterizations
developed here, along with resource hedging for risk mitigation, support a measured ap-
proach to addressing BT attacks. In addition to being more sustainable, measured responses
may introduce fewer undesirable side effects and be less susceptible to feints.
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A Methodology for obtaining a dose distribution consis-
tent with atmospheric dispersion over a geographically
distributed population

The spatial distribution of dosages due to atmospheric release of an aerosol can be modeled
using a simple Gaussian plume model [48]. An atmospheric release typically occurs over a
domain with a non-uniform population distribution; we can combine the plume model with
the population distribution to calculate the number of people exposed to a given dose. In
this appendix, we describe a simple way to obtain such a population-dosage distribution.

We consider a square domain, L km on each side; in this study, L 
 10 km. The domain is
divided into N blocks per side; here N 
 100. Twenty five population clusters are chosen
in the form of Gaussian kernels Aexp � � r2 % R2 � , where r2 
 � x � x0 � 2. The strength of
the kernel A, its center x0, and its length scale R are randomly sampled from independent
uniform distributions. The population density in any block, with its center at x, is a sum
of the strengths of all the 25 kernels. The strengths of the kernels are scaled to obtain a
total population (in the domain) of Pdomain. The population in a given block is obtained
by multiplying the population density with the block area. This creates a geographically
distributed population.

The number of people exposed (i.e., those who inhaled the aerosol, but may or may not
develop symptoms) and infected (i.e., who will develop symptoms) is dependent on the
location and size of the release and direction of the wind. We release 1013 spores at the
origin, at a height of 100 meters. A wind speed of 4 m/s and a Pasquill stability class
of “B” are assumed. Pasquill stability classes indicate atmospheric stability; class B indi-
cates a moderately unstable atmosphere with strong daytime insolation. Details of Pasquill
stability classes and atmospheric dispersion are in [48]. In our study, wind directions are
measured in degrees from due north; that is, a wind direction of zero degrees is a wind from
due north, 90 degrees is a westerly wind, and a direction of 180 degrees is a wind from due
south. The release is assumed to be an explosive point release, and the concentration of the
aerosol at any point � x � y � on the ground and any time t is given by [48]:

χ � x � y � t � 
 2QT� 2π � 3 Q 2σx X σy X σz X exp YZ� � x [8� ut � 2
2σ2

x X \ exp YZ� � y []� 2
2σ2

y X^\ exp Y_� � H []� 2
2σ2

z XZ\ (19)

where � x [ � y [ � are Cartesian coordinates in a frame of reference where the x [ -axis is aligned
with the wind. σx X � σy X and σz X are coefficients dependent on x [ and on the Pasquill stability
class. H is the height of release and χ is the concentration of the aerosol in spores per unit
volume. u is the wind velocity. QT is the total number of spores released. The relation
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between x [ and x is given by

 x
y
! 
  cos � π � θ � � sin � π � θ �

sin � π � θ � cos � π � θ � !  x [
y [ !

where θ is the wind direction. Assuming a breathing rate β of 30 liters a minute, one can
obtain an expression for the number of spores inhaled per unit time. Integrating to infinite
time, one obtains the total number of spores D inhaled by a person positioned at � x � y � (or
at � x [ � y [ � ):

D 
 QT β
2πσx X σy X σz X exp Y � � y [ � 2

2σ2
y X^\ exp Y � � H [ � 2

2σ2
z X`\ � 1 � erf � x [ �
�a�

The dosage assigned to a given block is decided by the location of its center. If we choose
Model A2 to simulate the BT attack, we use Glassman’s formula to model the probability
a of showing symptoms (in infinite time) given a dosage D [43]:

a � D � 
 1
2 ' 1 � erf  ln � D % D0 �

S
$

2
!)( (20)

where D0 
 8 � 600 spores and S 
 3 � 44. These correspond to a human ID50 of 8600 spores
and a probit slope of 0.67 [42, 43]. If Model D is chosen instead, we employ Eq. 7 to
determine the probability of infection given a dose D. Since the population in a block is
known, we can then use the probability of infection to calculate the number of people in the
block who will proceed to develop symptoms over time, per the incubation period model.

In this study, we use Pdomain 
 3 � 106 and two plume directions, θ 
 170 > and 125 > .
The two releases result in, respectively, 686,068 and 1,869,741 exposed individuals, i.e.,
individuals who have received a dose of one spore or more. The maximum doses observed
in the two cases are 30,877 and 314,053 respectively. The dose range is divided into 100
equal bins and a histogram of the number of people in each bin is developed for each
of the cases. The histogram is then normalized to obtain the “exposure” PDF, i.e, the
PDF of the dose received by an individual in the exposed population. Given the large
population (Pdomain 
 3 � 106), the PDF developed from a histogram with 100 bins is quite
smooth. Note that only a fraction of the exposed population will develop symptoms, with an
individual’s probability of being infected (and subsequently developing symptoms) being
given by Glassman’s relation (Eq. 20) or Eq. 7.

The “exposure” PDFs developed for θ 
 170 > and 125 > are then used to sample from a
smaller exposed population of pexposed for each of the tests. Values of pexposed and θ used
for the different cases are in Table A.1. Each exposed individual is then allowed to become
infected with a dose-dependent probability. The resulting infected sub-population yields
the final dose distribution.
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Figure A.1. Dosage plumes plotted over the population distribution for θ W 170 b (left) and 125 b
(right). We see on the right that the extremities of the plume extend into a high-population-density
region. Population density is measured in number of people per square kilometer. Thus we may
expect a substantial number of high-dosage cases, resulting in a higher average dosage D.

Table A.1. The wind direction, θ, and the size of the exposed population, pexposed, used to gen-
erate the infected population in various attacks. For Cases I, Ia, II, and IIa, Eq. 20 is used for the
probability of infection, while for Cases III, IIIa, IV, and IVa, Eq. 7 is used.

pexposed 
 103 pexposed 
 104

θ 
 170 > Case Ia, Case IIIa Case I, Case III
θ 
 125 > Case II, Case IV Case IIa, Case IVa

Dose distributions resulting from this process, for all the cases (viz. Cases Ia, I, II, IIa, IIIa,
III, IVa and IV) are depicted in Figure A.2. We plot the inverse CDF of doses—i.e., the
abscissa is the fraction of the infected population which receives a dose less than or equal
to the ordinate. In each inset, we also plot a histogram of the dose distribution. Note that
while the doses may easily span two orders of magnitude, about 80% of the infected people
lie within a one-decade range.
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Figure A.2. The inverse cumulative distribution of doses for Cases Ia, I, II, and IIa (left column)
and Cases IIIa, III, IV, IVa (right column). The abscissa is the fraction of the infected population
which receives a dose less than or equal to the ordinate. Inset: we plot histograms containing the
number of infected people in each dose bin. While the histograms have long tails, the bulk of the
population receives doses spanning one order of magnitude.
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